678 research outputs found

    Lipid lowering and Alzheimer's disease risk: a Mendelian randomization study

    Get PDF
    Objective: To examine whether genetic variation affecting the expression or function of lipid-lowering drug targets isassociated with Alzheimer disease (AD) risk, to evaluate the potential impact of long-term exposure to correspondingtherapeutics.Methods: We conducted Mendelian randomization analyses using variants in genes that encode the protein targets ofseveral approved lipid-lowering drug classes: HMGCR (encoding the target for statins), PCSK9 (encoding the target forPCSK9 inhibitors, eg, evolocumab and alirocumab), NPC1L1 (encoding the target for ezetimibe), and APOB (encodingthe target of mipomersen). Variants were weighted by associations with low-density lipoprotein cholesterol (LDL-C)using data from lipid genetics consortia (n up to 295,826). We meta-analyzed Mendelian randomization estimates forregional variants weighted by LDL-C on AD risk from 2 large samples (total n = 24,718 cases, 56,685 controls).Results: Models for HMGCR, APOB, and NPC1L1 did not suggest that the use of related lipid-lowering drug classeswould affect AD risk. In contrast, genetically instrumented exposure to PCSK9 inhibitors was predicted to increase ADrisk in both of the AD samples (combined odds ratio per standard deviation lower LDL-C inducible by the drug tar-get = 1.45, 95% confidence interval = 1.23–1.69). This risk increase was opposite to, although more modest than, thedegree of protection from coronary artery disease predicted by these same methods for PCSK9 inhibition.Interpretation: We did not identify genetic support for the repurposing of statins, ezetimibe, or mipomersen for ADprevention. Notwithstanding caveats to this genetic evidence, pharmacovigilance for AD risk among users of PCSK9inhibitors may be warranted

    Dynein structure and power stroke

    Get PDF
    Dynein ATPases are microtubule motors that are critical to diverse processes such as vesicle transport and the beating of sperm tails; however, their mechanism of force generation is unknown. Each dynein comprises a head, from which a stalk and a stem emerge. Here we use electron microscopy and image processing to reveal new structural details of dynein c, an isoform from Chlamydomonas reinhardtii flagella, at the start and end of its power stroke. Both stem and stalk are flexible, and the stem connects to the head by means of a linker approximately 10 nm long that we propose lies across the head. With both ADP and vanadate bound, the stem and stalk emerge from the head 10 nm apart. However, without nucleotide they emerge much closer together owing to a change in linker orientation, and the coiled-coil stalk becomes stiffer. The net result is a shortening of the molecule coupled to an approximately 15-nm displacement of the tip of the stalk. These changes indicate a mechanism for the dynein power stroke

    Risk factors for delay in symptomatic presentation: a survey of cancer patients

    Get PDF
    Background: Delay in symptomatic presentation leading to advanced stage at diagnosis may contribute to poor cancer survival. To inform public health approaches to promoting early symptomatic presentation, we aimed to identify risk factors for delay in presentation across several cancers. Methods: We surveyed 2371 patients with 15 cancers about nature and duration of symptoms using a postal questionnaire. We calculated relative risks for delay in presentation (time from symptom onset to first presentation >3 months) by cancer, symptoms leading to diagnosis and reasons for putting off going to the doctor, controlling for age, sex and deprivation group. Results: Among 1999 cancer patients reporting symptoms, 21% delayed presentation for >3 months. Delay was associated with greater socioeconomic deprivation but not age or sex. Patients with prostate (44%) and rectal cancer (37%) were most likely to delay and patients with breast cancer least likely to delay (8%). Urinary difficulties, change of bowel habit, systemic symptoms (fatigue, weight loss and loss of appetite) and skin symptoms were all common and associated with delay. Overall, patients with bleeding symptoms were no more likely to delay presentation than patients who did not have bleeding symptoms. However, within the group of patients with bleeding symptoms, there were significant differences in risk of delay by source of bleeding: 35% of patients with rectal bleeding delayed presentation, but only 9% of patients with urinary bleeding. A lump was a common symptom but not associated with delay in presentation. Twenty-eight percent had not recognised their symptoms as serious and this was associated with a doubling in risk of delay. Embarrassment, worry about what the doctor might find, being too busy to go to the doctor and worry about wasting the doctor’s time were also strong risk factors for delay, but were much less commonly reported (<6%). Interpretation: Approaches to promote early presentation should aim to increase awareness of the significance of cancer symptoms and should be designed to work for people of the lowest socioeconomic status. In particular, awareness that rectal bleeding is a possible symptom of cancer should be raised

    Effective Theory of a Dynamically Broken Electroweak Standard Model at NLO

    Full text link
    We consider the Standard Model as an effective theory at the weak scale vv of a generic new strong interaction that dynamically breaks electroweak symmetry at the energy scale Λ\Lambda\sim (few) TeV. Assuming only the minimal field content with the Standard Model fermions and gauge bosons, but without a light Higgs particle, we construct the complete Lagrangian through next-to-leading order, that is, including terms of order v2/Λ2v^2/\Lambda^2. The systematics behind this expansion is clarified. Although similar to chiral perturbation theory, it is not governed by the dimension of operators alone, but depends in an essential way on the loop expansion. Power-counting formulas are derived that indicate the classes of operators required at the next-to-leading order. The complete set of operators at leading and next-to-leading order is then listed, based on the restrictions implied by the Standard-Model gauge symmetries. We recover the well-known operators discussed in the literature in connection with the electroweak chiral Lagrangian and in similar contexts, but we collect a complete and systematic list of all terms through order v2/Λ2v^2/\Lambda^2. This includes some operators not discussed in explicit terms before. We also show that a few of the previously considered operators can be eliminated via the equations of motion. As another important result we confirm the known list of dimension-6 operators in the Standard Model with an elementary Higgs doublet, essentially as a special case of our scenario.Comment: 35 pages, 1 figure; references adde

    Caracol, Belize, and Changing Perceptions of Ancient Maya Society

    Full text link

    Mendelian randomization for studying the effects of perturbing drug targets [version 1; peer review: awaiting peer review]

    Get PDF
    Drugs whose targets have genetic evidence to support efficacy and safety are more likely to be approved after clinical development. In this paper, we provide an overview of how natural sequence variation in the genes that encode drug targets can be used in Mendelian randomization analyses to offer insight into mechanism-based efficacy and adverse effects. Large databases of summary level genetic association data are increasingly available and can be leveraged to identify and validate variants that serve as proxies for drug target perturbation. As with all empirical research, Mendelian randomization has limitations including genetic confounding, its consideration of lifelong effects, and issues related to heterogeneity across different tissues and populations. When appropriately applied, Mendelian randomization provides a useful empirical framework for using population level data to improve the success rates of the drug development pipeline

    Mendelian randomization for studying the effects of perturbing drug targets [version 2; peer review: 3 approved, 1 approved with reservations]

    Get PDF
    Drugs whose targets have genetic evidence to support efficacy and safety are more likely to be approved after clinical development. In this paper, we provide an overview of how natural sequence variation in the genes that encode drug targets can be used in Mendelian randomization analyses to offer insight into mechanism-based efficacy and adverse effects. Large databases of summary level genetic association data are increasingly available and can be leveraged to identify and validate variants that serve as proxies for drug target perturbation. As with all empirical research, Mendelian randomization has limitations including genetic confounding, its consideration of lifelong effects, and issues related to heterogeneity across different tissues and populations. When appropriately applied, Mendelian randomization provides a useful empirical framework for using population level data to improve the success rates of the drug development pipeline

    Resolving the Sources of Plasma Glucose Excursions following a Glucose Tolerance Test in the Rat with Deuterated Water and [U-13C]Glucose

    Get PDF
    Sources of plasma glucose excursions (PGE) following a glucose tolerance test enriched with [U-13C]glucose and deuterated water were directly resolved by 13C and 2H Nuclear Magnetic Resonance spectroscopy analysis of plasma glucose and water enrichments in rat. Plasma water 2H-enrichment attained isotopic steady-state within 2–4 minutes following the load. The fraction of PGE derived from endogenous sources was determined from the ratio of plasma glucose position 2 and plasma water 2H-enrichments. The fractional gluconeogenic contributions to PGE were obtained from plasma glucose positions 2 and 5 2H-positional enrichment ratios and load contributions were estimated from plasma [U-13C]glucose enrichments. At 15 minutes, the load contributed 26±5% of PGE while 14±2% originated from gluconeogenesis in healthy control rats. Between 15 and 120 minutes, the load contribution fell whereas the gluconeogenic contribution remained constant. High-fat fed animals had significant higher 120-minute blood glucose (173±6 mg/dL vs. 139±10 mg/dL, p<0.05) and gluconeogenic contributions to PGE (59±5 mg/dL vs. 38±3 mg/dL, p<0.01) relative to standard chow-fed controls. In summary, the endogenous and load components of PGE can be resolved during a glucose tolerance test and these measurements revealed that plasma glucose synthesis via gluconeogenesis remained active during the period immediately following a glucose load. In rats that were placed on high-fat diet, the development of glucose intolerance was associated with a significantly higher gluconeogenic contribution to plasma glucose levels after the load

    New Physics Models of Direct CP Violation in Charm Decays

    Get PDF
    In view of the recent LHCb measurement of Delta A_CP, the difference between the time-integrated CP asymmetries in D --> K+K- and D --> pi+pi- decays, we perform a comparative study of the possible impact of New Physics degrees of freedom on the direct CP asymmetries in singly Cabibbo suppressed D meson decays. We systematically discuss scenarios with a minimal set of new degrees of freedom that have renormalizable couplings to the SM particles and that are heavy enough such that their effects on the D meson decays can be described by local operators. We take into account both constraints from low energy flavor observables, in particular D0-D0bar mixing, and from direct searches. While models that explain the large measured value for Delta A_CP with chirally enhanced chromomagnetic penguins are least constrained, we identify a few viable models that contribute to the D meson decays at tree level or through loop induced QCD penguins. We emphasize that such models motivate direct searches at the LHC.Comment: 24 pages, 13 figures. v2: typos corrected, reference added, published versio

    Bidirectional lipid droplet velocities are controlled by differential binding strengths of HCV Core DII protein

    Get PDF
    Host cell lipid droplets (LD) are essential in the hepatitis C virus (HCV) life cycle and are targeted by the viral capsid core protein. Core-coated LDs accumulate in the perinuclear region and facilitate viral particle assembly, but it is unclear how mobility of these LDs is directed by core. Herein we used two-photon fluorescence, differential interference contrast imaging, and coherent anti-Stokes Raman scattering microscopies, to reveal novel core-mediated changes to LD dynamics. Expression of core protein’s lipid binding domain II (DII-core) induced slower LD speeds, but did not affect directionality of movement on microtubules. Modulating the LD binding strength of DII-core further impacted LD mobility, revealing the temporal effects of LD-bound DII-core. These results for DII-core coated LDs support a model for core-mediated LD localization that involves core slowing down the rate of movement of LDs until localization at the perinuclear region is accomplished where LD movement ceases. The guided localization of LDs by HCV core protein not only is essential to the viral life cycle but also poses an interesting target for the development of antiviral strategies against HCV
    corecore