2,792 research outputs found

    Constitutively active acetylcholine-dependent potassium current increases atrial defibrillation threshold by favoring post-shock re-initiation

    Get PDF
    Electrical cardioversion (ECV), a mainstay in atrial fibrillation (AF) treatment, is unsuccessful in up to 10-20% of patients. An important aspect of the remodeling process caused by AF is the constitutive activition of the atrium-specific acetylcholine-dependent potassium current (I-K,I-ACh -> I-K,I-ACh-c), which is associated with ECV failure. This study investigated the role of I-K,I-ACh-c in ECV failure and setting the atrial defibrillation threshold (aDFT) in optically mapped neonatal rat cardiomyocyte monolayers. AF was induced by burst pacing followed by application of biphasic shocks of 25-100 V to determine aDFT. Blocking I-K,I-ACh-c by tertiapin significantly decreased DFT, which correlated with a significant increase in wavelength during reentry. Genetic knockdown experiments, using lentiviral vectors encoding a Kcnj5-specific shRNA to modulate I-K,I-ACh-c, yielded similar results. Mechanistically, failed ECV was attributed to incomplete phase singularity (PS) removal or reemergence of PSs (i.e. re-initiation) through unidirectional propagation of shock-induced action potentials. Re-initiation occurred at significantly higher voltages than incomplete PS-removal and was inhibited by I-K,I-ACh-c blockade. Whole-heart mapping confirmed our findings showing a 60% increase in ECV success rate after I-K,I-ACh-c blockade. This study provides new mechanistic insight into failing ECV of AF and identifies I-K,I-ACh-c as possible atrium-specific target to increase ECV effectiveness, while decreasing its harmfulness

    Paradoxical onset of arrhythmic waves from depolarized areas in cardiac tissue due to curvature-dependent instability

    Get PDF
    The generation of abnormal excitations in pathological regions of the heart is a main trigger for lethal cardiac arrhythmias. Such abnormal excitations, also called ectopic activity, often arise from areas with local tissue heterogeneity or damage accompanied by localized depolarization. Finding the conditions that lead to ectopy is important to understand the basic biophysical principles underlying arrhythmia initiation and might further refine clinical procedures. In this study, we are the first to address the question of how geometry of the abnormal region affects the onset of ectopy using a combination of experimental, in silico, and theoretical approaches. We paradoxically find that, for any studied geometry of the depolarized region in optogenetically modified monolayers of cardiac cells, primary ectopic excitation originates at areas of maximal curvature of the boundary, where the stimulating electrotonic currents are minimal. It contradicts the standard critical nucleation theory applied to nonlinear waves in reaction-diffusion systems, where a higher stimulus is expected to produce excitation more easily. Our in silico studies reveal that the nonconventional ectopic activity is caused by an oscillatory instability at the boundary of the damaged region, the occurrence of which depends on the curvature of that boundary. The onset of this instability is confirmed using the Schrodinger equation methodology proposed by Rinzel and Keener [SIAM J. Appl. Math. 43, 907 (1983)]. Overall, we show distinctively novel insight into how the geometry of a heterogeneous cardiac region determines ectopic activity, which can be used in the future to predict the conditions that can trigger cardiac arrhythmias

    Optogenetics enables real-time spatiotemporal control over spiral wave dynamics in an excitable cardiac system

    Get PDF
    Propagation of non-linear waves is key to the functioning of diverse biological systems. Such waves can organize into spirals, rotating around a core, whose properties determine the overall wave dynamics. Theoretically, manipulation of a spiral wave core should lead to full spatiotemporal control over its dynamics. However, this theory lacks supportive evidence (even at a conceptual level), making it thus a long-standing hypothesis. Here, we propose a new phenomenological concept that involves artificially dragging spiral waves by their cores, to prove the aforementioned hypothesis in silico, with subsequent in vitro validation in optogenetically modified monolayers of rat atrial cardiomyocytes. We thereby connect previously established, but unrelated concepts of spiral wave attraction, anchoring and unpinning to demonstrate that core manipulation, through controlled displacement of heterogeneities in excitable media, allows forced movement of spiral waves along pre-defined trajectories. Consequently, we impose real-time spatiotemporal control over spiral wave dynamics in a biological system

    Islands of spatially discordant APD alternans underlie arrhythmogenesis by promoting electrotonic dyssynchrony in models of fibrotic rat ventricular myocardium

    Get PDF
    Fibrosis and altered gap junctional coupling are key features of ventricular remodelling and are associated with abnormal electrical impulse generation and propagation. Such abnormalities predispose to reentrant electrical activity in the heart. In the absence of tissue heterogeneity, high-frequency impulse generation can also induce dynamic electrical instabilities leading to reentrant arrhythmias. However, because of the complexity and stochastic nature of such arrhythmias, the combined effects of tissue heterogeneity and dynamical instabilities in these arrhythmias have not been explored in detail. Here, arrhythmogenesis was studied using in vitro and in silico monolayer models of neonatal rat ventricular tissue with 30% randomly distributed cardiac myofibroblasts and systematically lowered intercellular coupling achieved in vitro through graded knockdown of connexin43 expression. Arrhythmia incidence and complexity increased with decreasing intercellular coupling efficiency. This coincided with the onset of a specialized type of spatially discordant action potential duration alternans characterized by island-like areas of opposite alternans phase, which positively correlated with the degree of connexinx43 knockdown and arrhythmia complexity. At higher myofibroblast densities, more of these islands were formed and reentrant arrhythmias were more easily induced. This is the first study exploring the combinatorial effects of myocardial fibrosis and dynamic electrical instabilities on reentrant arrhythmia initiation and complexity

    The effect of experimental hyperoxia on erythrocytes’ oxygen-transport function

    Get PDF
    The aim of this study was to investigate the effect of hyperoxia, calcium ions and pH value on the composition of major phospholipids in human erythrocyte membranes and erythrocytes’ oxygen-transport function. To create a model of hyperoxia, we saturated the incubated mixture with oxygen by constant passing of oxygen–air mixture through the incubation medium. To assess the effect of elevated calcium ion concentrations, CaCl2 was added to the incubation medium. An incubation medium with different pH was used to study the effect of various pH values. Lipids were extracted from erythrocytes and chromatographic separation was carried out in a thin layer of silica gel deposited on a glass plate. The thiobarbituric acid (TBA)-active products and the content of diene conjugates (DC) in erythrocytes were determined. The oxygen-binding capacity of haemoglobin was evaluated using Raman spectroscopy. The obtained results indicated that hyperoxia causes deep changes both in the composition and character of bilayer lipids of erythrocyte membranes, which affects the functional characteristics of erythrocytes, primarily the oxygen-transport properties of erythrocyte haemoglobin. It should be noted that a combination of Ca2+ ions and change in the pH value intensify the processes associated with disruption of phospholipids’ composition. The findings indicate that the lipid phase is one of the key elements in the functioning of erythrocytes in norm as well as during development of various pathological processes

    Long-range Kondo signature of a single magnetic impurity

    Full text link
    The Kondo effect, one of the oldest correlation phenomena known in condensed matter physics, has regained attention due to scanning tunneling spectroscopy (STS) experiments performed on single magnetic impurities. Despite the sub-nanometer resolution capability of local probe techniques one of the fundamental aspects of Kondo physics, its spatial extension, is still subject to discussion. Up to now all STS studies on single adsorbed atoms have shown that observable Kondo features rapidly vanish with increasing distance from the impurity. Here we report on a hitherto unobserved long range Kondo signature for single magnetic atoms of Fe and Co buried under a Cu(100) surface. We present a theoretical interpretation of the measured signatures using a combined approach of band structure and many-body numerical renormalization group (NRG) calculations. These are in excellent agreement with the rich spatially and spectroscopically resolved experimental data.Comment: 7 pages, 3 figures + 8 pages supplementary material; Nature Physics (Jan 2011 - advanced online publication

    Choosing the Best Direction of Printing for Additive Manufacturing Process in Medical Applications Using a New Geometric Complexity Model Based on Part CAD Data

    Get PDF
    Additive manufacturing processes is now experiencing significant growth and is at the origin of intense research activity (optimization of topology, biomedical applications, etc.). One of the characteristics of this method is that the geometric complexity is free. The complexity of a CAD model is also a field of research. The basic idea is that the complexity of a component has implications in design and especially in manufacturing. Indeed, industrial competitiveness in the mechanical field generated the need to produce increasingly complex systems and parts (in terms of geometry, topology ...). Part deposition orientation is also very important factor of additive manufacturing as it effects build time, support structure, dimensional accuracy, surface finish and cost of the part. A number of layered manufacturing process specific parameters and constraints have to be considered while deciding the part deposition orientation. Determination of an optimal part deposition orientation is a difficult and time consuming task as one has to trade-off among various contradicting objectives like part surface finish and build time. This paper describes and compares various attempts made to determine part deposition orientation of orthoses using geometric complexity model and part CAD information. (c) Springer Nature Switzerland AG 2019

    Kondo Conductance in an Atomic Nanocontact from First Principles

    Full text link
    The electrical conductance of atomic metal contacts represents a powerful tool to detect nanomagnetism. Conductance reflects magnetism through anomalies at zero bias -- generally with Fano lineshapes -- due to the Kondo screening of the magnetic impurity bridging the contact. A full atomic-level understanding of this nutshell many-body system is of the greatest importance, especially in view of our increasing need to control nanocurrents by means of magnetism. Disappointingly, zero bias conductance anomalies are not presently calculable from atomistic scratch. In this Letter we demonstrate a working route connecting approximately but quantitatively density functional theory (DFT) and numerical renormalization group (NRG) approaches and leading to a first-principles conductance calculation for a nanocontact, exemplified by a Ni impurity in a Au nanowire. A Fano-like conductance lineshape is obtained microscopically, and shown to be controlled by the impurity s-level position. We also find a relationship between conductance anomaly and geometry, and uncover the possibility of opposite antiferromagnetic and ferromagnetic Kondo screening -- the latter exhibiting a totally different and unexplored zero bias anomaly. The present matching method between DFT and NRG should permit the quantitative understanding and exploration of this larger variety of Kondo phenomena at more general magnetic nanocontacts.Comment: 11 pages, 3 figures. Supplementary materials under request at [email protected]

    A model of Bˉ0D+ωπ\bar{B}^0\to D^{*+}\omega\pi^- decay

    Full text link
    We suggest a parameterization of the matrix element for Bˉ0D+ωπ\bar{B}^0\to D^{*+}\omega\pi^- decay using kinematic variables convenient for experimental analysis. The contributions of intermediate ωπ\omega\pi- and DD^{**}-states up to spin 3 have been taken into account. The angular distributions for each discussed hypothesis have been obtained and analysed using Monte-Carlo simulation.Comment: 24 pages, 9 figures, 1 table; V2: text in some places improved and acknowledgments adde
    corecore