185 research outputs found

    Role of Ca2+ in the rapid cooling-induced Ca2+ release from sarcoplasmic reticulum in ferret cardiac muscles

    Get PDF
    Rapid lowering of the solution temperature (rapid cooling, RC) from 24 to 3°C within 3 s releases considerable amounts of Ca2+ from the sarcoplasmic reticulum (SR) in mammalian cardiac muscles. In this study, we investigated the intracellular mechanism of RC-induced Ca2+ release, especially the role of Ca2+, in ferret ventricular muscle. Saponin-treated skinned trabeculae were placed in a glass capillary, and the amount of Ca2+ released from the SR by RC and caffeine (50 mM) was measured with fluo-3. It was estimated that in the presence of ATP about 45% of the Ca2+ content in the SR was released by RC. The amount of SR Ca2+ released by RC was unchanged by the replacement of ATP by AMP-PCP (a non-hydrolysable ATP analogue and agonist for the ryanodine receptor but not for the Ca2+ pump of SR), suggesting that the suppression of the Ca2+ pump of SR at low temperature might not be a major mechanism in RC-induced Ca2+ release. The free Ca2+ concentration of the solution used for triggering RC-induced Ca2+ release was estimated to be only about 20 nM with fluo-3 or aequorin. When this solution was applied to the preparation at 3°C, only a small amount of Ca2+ was released from SR presumably by the Ca2+-induced Ca2+ release (CICR) mechanism. Thus, in mammalian cardiac muscles, RC releases a part of the (<50%) stored Ca2+ contained in the SR, and the mechanism of RC-induced Ca2+ release may differ from that of CICR, which is thought to play a role in frog skeletal muscle fibres that express ryanodine receptors of different types

    Compounds from Silicones Alter Enzyme Activity in Curing Barnacle Glue and Model Enzymes

    Get PDF
    Background: Attachment strength of fouling organisms on silicone coatings is low. We hypothesized that low attachment strength on silicones is, in part, due to the interaction of surface available components with natural glues. Components could alter curing of glues through bulk changes or specifically through altered enzyme activity. Methodology/Principal Findings: GC-MS analysis of silicone coatings showed surface-available siloxanes when the coatings were gently rubbed with a cotton swab for 15 seconds or given a 30 second rinse with methanol. Mixtures of compounds were found on 2 commercial and 8 model silicone coatings. The hypothesis that silicone components alter glue curing enzymes was tested with curing barnacle glue and with commercial enzymes. In our model, barnacle glue curing involves trypsin-like serine protease(s), which activate enzymes and structural proteins, and a transglutaminase which cross-links glue proteins. Transglutaminase activity was significantly altered upon exposure of curing glue from individual barnacles to silicone eluates. Activity of purified trypsin and, to a greater extent, transglutaminase was significantly altered by relevant concentrations of silicone polymer constituents. Conclusions/Significance: Surface-associated silicone compounds can disrupt glue curing and alter enzyme properties

    Structural basis for delta cell paracrine regulation in pancreatic islets

    Get PDF
    International audienceLittle is known about the role of islet delta cells in regulating blood glucose homeostasis in vivo. Delta cells are important paracrine regulators of beta cell and alpha cell secretory activity, however the structural basis underlying this regulation has yet to be determined. Most delta cells are elongated and have a well-defined cell soma and a filopodia-like structure. Using in vivo optogenetics and high-speed Ca2+ imaging, we show that these filopodia are dynamic structures that contain a secretory machinery, enabling the delta cell to reach a large number of beta cells within the islet. This provides for efficient regulation of beta cell activity and is modulated by endogenous IGF-1/VEGF-A signaling. In pre-diabetes, delta cells undergo morphological changes that may be a compensation to maintain paracrine regulation of the beta cell. Our data provides an integrated picture of how delta cells can modulate beta cell activity under physiological conditions

    Mitochondrial fragmentation and superoxide anion production in coronary endothelial cells from a mouse model of type 1 diabetes

    Get PDF
    Mitochondria frequently change their shapes by fusion and fission and these morphological dynamics play important roles in mitochondrial function and development as well as programmed cell death. The goal of this study is to investigate whether: (1) mitochondria in mouse coronary endothelial cells (MCECs) isolated from diabetic mice exhibit increased fragmentation; and (2) chronic treatment with a superoxide anion (O2 −) scavenger has a beneficial effect on mitochondrial fragmentation in MCECs. MCECs were freshly isolated and lysed for protein measurement, or cultured to determine mitochondrial morphology and O2 − production. For the ex vivo hyperglycaemia experiments, human coronary endothelial cells were used. Elongated mitochondrial tubules were observed in MCECs isolated from control mice, whereas mitochondria in MCECs from diabetic mice exhibited augmented fragmentation. The level of optic atrophy 1 (OPA1) protein, which leads to mitochondrial fusion, was significantly decreased, while dynamin-related protein 1 (DRP1), which leads to mitochondrial fission, was significantly increased in MCECs from diabetic mice. Diabetic MCECs exhibited significantly higher O2 − concentrations in cytosol and mitochondria than control MCECs. Administration of the O2 − scavenger TEMPOL to diabetic mice for 4 weeks led to a significant decrease in mitochondrial fragmentation without altering the levels of OPA1 and DRP1 proteins in MCECs. High-glucose treatment for 24 h significantly induced mitochondrial fragmentation, which was restored by TEMPOL treatment. In addition, excess O2 − production, either in cytosol or in mitochondria, significantly increased mitochondrial fragmentation. These data suggest that lowering the O2 − concentration can restore the morphological change in mitochondria and may help improve mitochondrial function in diabetic MCECs

    The International Caries Classification and Management System (ICCMS™) An Example of a Caries Management Pathway.

    Get PDF

    Cohesin Proteins Promote Ribosomal RNA Production and Protein Translation in Yeast and Human Cells

    Get PDF
    Cohesin is a protein complex known for its essential role in chromosome segregation. However, cohesin and associated factors have additional functions in transcription, DNA damage repair, and chromosome condensation. The human cohesinopathy diseases are thought to stem not from defects in chromosome segregation but from gene expression. The role of cohesin in gene expression is not well understood. We used budding yeast strains bearing mutations analogous to the human cohesinopathy disease alleles under control of their native promoter to study gene expression. These mutations do not significantly affect chromosome segregation. Transcriptional profiling reveals that many targets of the transcriptional activator Gcn4 are induced in the eco1-W216G mutant background. The upregulation of Gcn4 was observed in many cohesin mutants, and this observation suggested protein translation was reduced. We demonstrate that the cohesinopathy mutations eco1-W216G and smc1-Q843Δ are associated with defects in ribosome biogenesis and a reduction in the actively translating fraction of ribosomes, eiF2α-phosphorylation, and 35S-methionine incorporation, all of which indicate a deficit in protein translation. Metabolic labeling shows that the eco1-W216G and smc1-Q843Δ mutants produce less ribosomal RNA, which is expected to constrain ribosome biogenesis. Further analysis shows that the production of rRNA from an individual repeat is reduced while copy number remains unchanged. Similar defects in rRNA production and protein translation are observed in a human Roberts syndrome cell line. In addition, cohesion is defective specifically at the rDNA locus in the eco1-W216G mutant, as has been previously reported for Roberts syndrome. Collectively, our data suggest that cohesin proteins normally facilitate production of ribosomal RNA and protein translation, and this is one way they can influence gene expression. Reduced translational capacity could contribute to the human cohesinopathies
    corecore