269 research outputs found

    High loading of polygenic risk for ADHD in children with comorbid aggression

    Get PDF
    Objective: Although attention deficit hyperactivity disorder (ADHD) is highly heritable, genome-wide association studies (GWAS) have not yet identified any common genetic variants that contribute to risk. There is evidence that aggression or conduct disorder in children with ADHD indexes higher genetic loading and clinical severity. The authors examine whether common genetic variants considered en masse as polygenic scores for ADHD are especially enriched in children with comorbid conduct disorder. Method: Polygenic scores derived from an ADHD GWAS meta-analysis were calculated in an independent ADHD sample (452 case subjects, 5,081 comparison subjects). Multivariate logistic regression analyses were employed to compare polygenic scores in the ADHD and comparison groups and test for higher scores in ADHD case subjects with comorbid conduct disorder relative to comparison subjects and relative to those without comorbid conduct disorder. Association with symptom scores was tested using linear regression. Results: Polygenic risk for ADD, derived from the meta-analysis, was higher in the independent ADHD group than in the comparison group. Polygenic score was significantly higher in ADHD case subjects with conduct disorder relative to ADHD case subjects without conduct disorder. ADHD polygenic score showed significant association with comorbid conduct disorder symptoms. This relationship was explained by,the aggression items. Conclusions: Common genetic variation is relevant to ADHD, especially in individuals with comorbid aggression. The findings suggest that the previously published ADHD GWAS meta-analysis contains weak but true associations with common variants, support for which falls below genome-wide significance levels. The findings also highlight the fact that aggression in ADHD indexes genetic as well as clinical severity

    Extending the rapeseed gene pool with resynthesized Brassica napus II: Heterosis

    Get PDF
    Hybrid breeding relies on the combination of parents from two differing heterotic groups. However, the genetic diversity in adapted oilseed rape breeding material is rather limited. Therefore, the use of resynthesized Brassica napus as a distant gene pool was investigated. Hybrids were derived from crosses between 44 resynthesized lines with a diverse genetic background and two male sterile winter oilseed rape tester lines. The hybrids were evaluated together with their parents and check cultivars in 2 years and five locations in Germany. Yield, plant height, seed oil, and protein content were monitored, and genetic distances were estimated with molecular markers (127 polymorphic RFLP fragments). Resynthesized lines varied in yield between 40.9 dt/ha and 21.5 dt/ha, or between 85.1 and 44.6% of check cultivar yields. Relative to check cultivars, hybrids varied from 91.6 to 116.6% in yield and from 94.5 to 103.3% in seed oil content. Mid-parent heterosis varied from −3.5 to 47.2% for yield. The genetic distance of parental lines was not significantly correlated with heterosis or hybrid yield. Although resynthesized lines do not meet the elite rapeseed standards, they are a valuable source for hybrid breeding due to their large distance from present breeding material and their high heterosis when combined with European winter oilseed rape

    The Ras Antagonist, Farnesylthiosalicylic Acid (FTS), Decreases Fibrosis and Improves Muscle Strength in dy2J/dy2J Mouse Model of Muscular Dystrophy

    Get PDF
    The Ras superfamily of guanosine-triphosphate (GTP)-binding proteins regulates a diverse spectrum of intracellular processes involved in inflammation and fibrosis. Farnesythiosalicylic acid (FTS) is a unique and potent Ras inhibitor which decreased inflammation and fibrosis in experimentally induced liver cirrhosis and ameliorated inflammatory processes in systemic lupus erythematosus, neuritis and nephritis animal models. FTS effect on Ras expression and activity, muscle strength and fibrosis was evaluated in the dy2J/dy2J mouse model of merosin deficient congenital muscular dystrophy. The dy2J/dy2J mice had significantly increased RAS expression and activity compared with the wild type mice. FTS treatment significantly decreased RAS expression and activity. In addition, phosphorylation of ERK, a Ras downstream protein, was significantly decreased following FTS treatment in the dy2J/dy2J mice. Clinically, FTS treated mice showed significant improvement in hind limb muscle strength measured by electronic grip strength meter. Significant reduction of fibrosis was demonstrated in the treated group by quantitative Sirius Red staining and lower muscle collagen content. FTS effect was associated with significantly inhibition of both MMP-2 and MMP-9 activities. We conclude that active RAS inhibition by FTS was associated with attenuated fibrosis and improved muscle strength in the dy2J/dy2J mouse model of congenital muscular dystrophy

    Genetic Characterization of a Core Set of a Tropical Maize Race Tuxpeño for Further Use in Maize Improvement

    Get PDF
    The tropical maize race Tuxpeño is a well-known race of Mexican dent germplasm which has greatly contributed to the development of tropical and subtropical maize gene pools. In order to investigate how it could be exploited in future maize improvement, a panel of maize germplasm accessions was assembled and characterized using genome-wide Single Nucleotide Polymorphism (SNP) markers. This panel included 321 core accessions of Tuxpeño race from the International Maize and Wheat Improvement Center (CIMMYT) germplasm bank collection, 94 CIMMYT maize lines (CMLs) and 54 U.S. Germplasm Enhancement of Maize (GEM) lines. The panel also included other diverse sources of reference germplasm: 14 U.S. maize landrace accessions, 4 temperate inbred lines from the U.S. and China, and 11 CIMMYT populations (a total of 498 entries with 795 plants). Clustering analyses (CA) based on Modified Rogers Distance (MRD) clearly partitioned all 498 entries into their corresponding groups. No sub clusters were observed within the Tuxpeño core set. Various breeding strategies for using the Tuxpeño core set, based on grouping of the studied germplasm and genetic distance among them, were discussed. In order to facilitate sampling diversity within the Tuxpeño core, a minicore subset of 64 Tuxpeño accessions (20% of its usual size) representing the diversity of the core set was developed, using an approach combining phenotypic and molecular data. Untapped diversity represents further use of the Tuxpeño landrace for maize improvement through the core and/or minicore subset available to the maize community

    Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.)

    Get PDF
    Little is known about the genetic control of heterosis in the complex polyploid crop species oilseed rape (Brassica napus L.). In this study, two large doubled-haploid (DH) mapping populations and two corresponding sets of backcrossed test hybrids (THs) were analysed in controlled greenhouse experiments and extensive field trials for seedling biomass and yield performance traits, respectively. Genetic maps from the two populations, aligned with the help of common simple sequence repeat markers, were used to localise and compare quantitative trait loci (QTL) related to the expression of heterosis for seedling developmental traits, plant height at flowering, thousand seed mass, seeds per silique, siliques per unit area and seed yield. QTL were mapped using data from the respective DH populations, their corresponding TH populations and from mid-parent heterosis (MPH) data, allowing additive and dominance effects along with digenic epistatic interactions to be estimated. A number of genome regions containing numerous heterosis-related QTL involved in different traits and at different developmental stages were identified at corresponding map positions in the two populations. The co-localisation of per se QTL from the DH population datasets with heterosis-related QTL from the MPH data could indicate regulatory loci that may also contribute to fixed heterosis in the highly duplicated B. napus genome. Given the key role of epistatic interactions in the expression of heterosis in oilseed rape, these QTL hotspots might harbour genes involved in regulation of heterosis (including fixed heterosis) for different traits throughout the plant life cycle, including a significant overall influence on heterosis for seed yield

    Impact of the AHI1 Gene on the Vulnerability to Schizophrenia: A Case-Control Association Study

    Get PDF
    BackgroundThe Abelson helper integration-1 (AHI1) gene is required for both cerebellar and cortical development in humans. While the accelerated evolution of AHI1 in the human lineage indicates a role in cognitive (dys)function, a linkage scan in large pedigrees identified AHI1 as a positional candidate for schizophrenia. To further investigate the contribution of AHI1 to the susceptibility of schizophrenia, we evaluated the effect of AHI1 variation on the vulnerability to psychosis in two samples from Spain and Germany.Methodology/Principal Findings29 single-nucleotide polymorphisms (SNPs) located in a genomic region including the AHI1 gene were genotyped in two samples from Spain (280 patients with psychotic disorders; 348 controls) and Germany (247 patients with schizophrenic disorders; 360 controls). Allelic, genotypic and haplotype frequencies were compared between cases and controls in both samples separately, as well as in the combined sample. The effect of genotype on several psychopathological measures (BPRS, KGV, PANSS) assessed in a Spanish subsample was also evaluated. We found several significant associations in the Spanish sample. Particularly, rs7750586 and rs911507, both located upstream of the AHI1 coding region, were found to be associated with schizophrenia in the analysis of genotypic (p = 0.0033, and 0.031, respectively) and allelic frequencies (p = 0.001 in both cases). Moreover, several other risk and protective haplotypes were detected (0.006<p<0.036). Joint analysis also supported the association of rs7750586 and rs911507 with the risk for schizophrenia. The analysis of clinical measures also revealed an effect on symptom severity (minimum P value = 0.0037).Conclusions/SignificanceOur data support, in agreement with previous reports, an effect of AHI1 variation on the susceptibility to schizophrenia in central and southern European populations

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Patterns of Coupled Theta Activity in Amygdala-Hippocampal-Prefrontal Cortical Circuits during Fear Extinction

    Get PDF
    Signals related to fear memory and extinction are processed within brain pathways involving the lateral amygdala (LA) for formation of aversive stimulus associations, the CA1 area of the hippocampus for context-dependent modulation of these associations, and the infralimbic region of the medial prefrontal cortex (mPFC) for extinction processes. While many studies have addressed the contribution of each of these modules individually, little is known about their interactions and how they function as an integrated system. Here we show, by combining multiple site local field potential (LFP) and unit recordings in freely behaving mice in a fear conditioning paradigm, that theta oscillations may provide a means for temporally and functionally connecting these modules. Theta oscillations occurred with high specificity in the CA1-LA-mPFC network. Theta coupling increased between all areas during retrieval of conditioned fear, and declined during extinction learning. During extinction recall, theta coupling partly rebounded in LA-mPFC and CA1-mPFC, and remained at a low level in CA1-LA. Interfering with theta coupling through local electrical microstimulation in CA1-LA affected conditioned fear and extinction recall depending on theta phase. These results support the hypothesis that theta coupling provides a means for inter-areal coordination in conditioned behavioral responsiveness. More specifically, theta oscillations seem to contribute to a population code indicating conditioned stimuli during recall of fear memory before and after extinction
    corecore