364 research outputs found

    Erratum to: Surface layer proteins from virulent Clostridium difficile ribotypes exhibit signatures of positive selection with consequences for innate immune response

    Get PDF
    “Upon publication of the original article [1], it was noticed that there was an error in the author name. The author’s name should be "Micheál Mac Aogáin" instead of Micheál MacAogain.

    Genome-wide linkage analysis of 972 bipolar pedigrees using single-nucleotide polymorphisms.

    Get PDF
    Because of the high costs associated with ascertainment of families, most linkage studies of Bipolar I disorder (BPI) have used relatively small samples. Moreover, the genetic information content reported in most studies has been less than 0.6. Although microsatellite markers spaced every 10 cM typically extract most of the genetic information content for larger multiplex families, they can be less informative for smaller pedigrees especially for affected sib pair kindreds. For these reasons we collaborated to pool family resources and carried out higher density genotyping. Approximately 1100 pedigrees of European ancestry were initially selected for study and were genotyped by the Center for Inherited Disease Research using the Illumina Linkage Panel 12 set of 6090 single-nucleotide polymorphisms. Of the ~1100 families, 972 were informative for further analyses, and mean information content was 0.86 after pruning for linkage disequilibrium. The 972 kindreds include 2284 cases of BPI disorder, 498 individuals with bipolar II disorder (BPII) and 702 subjects with recurrent major depression. Three affection status models (ASMs) were considered: ASM1 (BPI and schizoaffective disorder, BP cases (SABP) only), ASM2 (ASM1 cases plus BPII) and ASM3 (ASM2 cases plus recurrent major depression). Both parametric and non-parametric linkage methods were carried out. The strongest findings occurred at 6q21 (non-parametric pairs LOD 3.4 for rs1046943 at 119 cM) and 9q21 (non-parametric pairs logarithm of odds (LOD) 3.4 for rs722642 at 78 cM) using only BPI and schizoaffective (SA), BP cases. Both results met genome-wide significant criteria, although neither was significant after correction for multiple analyses. We also inspected parametric scores for the larger multiplex families to identify possible rare susceptibility loci. In this analysis, we observed 59 parametric LODs of 2 or greater, many of which are likely to be close to maximum possible scores. Although some linkage findings may be false positives, the results could help prioritize the search for rare variants using whole exome or genome sequencing

    Prostaglandin E2 stimulates Fas ligand expression via the EP1 receptor in colon cancer cells

    Get PDF
    Fas ligand (FasL/CD95L) is a member of the tumour necrosis factor superfamily that triggers apoptosis following crosslinking of the Fas receptor. Despite studies strongly implicating tumour-expressed FasL as a major inhibitor of the anti-tumour immune response, little is known about the mechanisms that regulate FasL expression in tumours. In this study, we show that the cyclooxygenase (COX) signalling pathway, and in particular prostaglandin E2 (PGE2), plays a role in the upregulation of FasL expression in colon cancer. Suppression of either COX-2 or COX-1 by RNA interference in HCA-7 and HT29 colon tumour cells reduced FasL expression at both the mRNA and protein level. Conversely, stimulation with PGE2 increased FasL expression and these cells showed increased cytotoxicity against Fas-sensitive Jurkat T cells. Prostaglandin E2-induced FasL expression was mediated by signalling via the EP1 receptor. Moreover, immunohistochemical analysis using serial sections of human colon adenocarcinomas revealed a strong positive correlation between COX-2 and FasL (r=0.722; P<0.0001) expression, and between EP1 receptor and FasL (r=0.740; P<0.0001) expression, in the tumour cells. Thus, these findings indicate that PGE2 positively regulates FasL expression in colon tumour cells, adding another pro-neoplastic activity to PGE2

    MicroRNAs in pulmonary arterial remodeling

    Get PDF
    Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH

    Time-aging time-stress superposition in soft glass under tensile deformation field

    Full text link
    We have studied the tensile deformation behaviour of thin films of aging aqueous suspension of Laponite, a model soft glassy material, when subjected to a creep flow field generated by a constant engineering normal stress. Aqueous suspension of Laponite demonstrates aging behaviour wherein it undergoes time dependent enhancement of its elastic modulus as well as its characteristic relaxation time. However, under application of the normal stress, the rate of aging decreases and in the limit of high stress, the aging stops with the suspension now undergoing a plastic deformation. Overall, it is observed that the aging that occurs over short creep times at small normal stresses is same as the aging that occurs over long creep times at large normal stresses. This observation allows us to suggest an aging time - process time - normal stress superposition principle, which can predict rheological behaviour at longer times by carrying out short time tests.Comment: 26 pages, 7 figures, To appear in Rheologica Act

    Outcomes of a Comparison Study into a Group-Based Infant Parenting Programme

    Get PDF
    This paper reports on a quantitative evaluation of a group-based programme designed to promote parent-infant attachment and child development. Whilst group-based parenting programmes are recommended for treating and preventing conduct disorder in older children, there is, as yet, little evidence as to whether they have a positive effect on very young children and their carers’. Recent UK Government initiatives to support families and improve parenting skills in the first 2 years of children’s lives have increased the demand for the delivery and evaluation of community-based programmes. Eighty mother–child dyads were recruited from nine areas to intervention (n = 54) and control condition (n = 26). Baseline measures were collected in the children’s home when the infants were on average 3-months-old, and follow-up measures were collected 6 months post-baseline (N = 63). Mothers’ positive play behaviours were independently coded from video recordings taken in the home. Other measures included self-reported maternal confidence and mental well-being, assessed infant development and home environment. Socio-demographic data was collected once at baseline. After controlling for baseline scores, control mothers were observed to be significantly less sensitive during play with their baby at the 6 months follow-up with a significant increase in confidence. No differences were found between the groups on the other measures. This paper provides limited evidence for the effectiveness of the Incredible Years Parents and Babies group-based programme delivered in the first year of life. Further evaluation, particularly with parents at increased risk of poorer outcomes is needed to confirm and extend these results

    Increased peri-ductal collagen micro-organization may contribute to raised mammographic density

    Get PDF
    BACKGROUND: High mammographic density is a therapeutically modifiable risk factor for breast cancer. Although mammographic density is correlated with the relative abundance of collagen-rich fibroglandular tissue, the causative mechanisms, associated structural remodelling and mechanical consequences remain poorly defined. In this study we have developed a new collaborative bedside-to-bench workflow to determine the relationship between mammographic density, collagen abundance and alignment, tissue stiffness and the expression of extracellular matrix organising proteins. METHODS: Mammographic density was assessed in 22 post-menopausal women (aged 54–66 y). A radiologist and a pathologist identified and excised regions of elevated non-cancerous X-ray density prior to laboratory characterization. Collagen abundance was determined by both Masson’s trichrome and Picrosirius red staining (which enhances collagen birefringence when viewed under polarised light). The structural specificity of these collagen visualisation methods was determined by comparing the relative birefringence and ultrastructure (visualised by atomic force microscopy) of unaligned collagen I fibrils in reconstituted gels with the highly aligned collagen fibrils in rat tail tendon. Localised collagen fibril organisation and stiffness was also evaluated in tissue sections by atomic force microscopy/spectroscopy and the abundance of key extracellular proteins was assessed using mass spectrometry. RESULTS: Mammographic density was positively correlated with the abundance of aligned periductal fibrils rather than with the abundance of amorphous collagen. Compared with matched tissue resected from the breasts of low mammographic density patients, the highly birefringent tissue in mammographically dense breasts was both significantly stiffer and characterised by large (>80 μm long) fibrillar collagen bundles. Subsequent proteomic analyses not only confirmed the absence of collagen fibrosis in high mammographic density tissue, but additionally identified the up-regulation of periostin and collagen XVI (regulators of collagen fibril structure and architecture) as potential mediators of localised mechanical stiffness. CONCLUSIONS: These preliminary data suggest that remodelling, and hence stiffening, of the existing stromal collagen microarchitecture promotes high mammographic density within the breast. In turn, this aberrant mechanical environment may trigger neoplasia-associated mechanotransduction pathways within the epithelial cell population. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13058-015-0664-2) contains supplementary material, which is available to authorized users
    corecore