42 research outputs found

    Citizen Science Reveals Unexpected Continental-Scale Evolutionary Change in a Model Organism

    Get PDF
    Organisms provide some of the most sensitive indicators of climate change and evolutionary responses are becoming apparent in species with short generation times. Large datasets on genetic polymorphism that can provide an historical benchmark against which to test for recent evolutionary responses are very rare, but an exception is found in the brown-lipped banded snail (Cepaea nemoralis). This species is sensitive to its thermal environment and exhibits several polymorphisms of shell colour and banding pattern affecting shell albedo in the majority of populations within its native range in Europe. We tested for evolutionary changes in shell albedo that might have been driven by the warming of the climate in Europe over the last half century by compiling an historical dataset for 6,515 native populations of C. nemoralis and comparing this with new data on nearly 3,000 populations. The new data were sampled mainly in 2009 through the Evolution MegaLab, a citizen science project that engaged thousands of volunteers in 15 countries throughout Europe in the biggest such exercise ever undertaken. A known geographic cline in the frequency of the colour phenotype with the highest albedo (yellow) was shown to have persisted and a difference in colour frequency between woodland and more open habitats was confirmed, but there was no general increase in the frequency of yellow shells. This may have been because snails adapted to a warming climate through behavioural thermoregulation. By contrast, we detected an unexpected decrease in the frequency of Unbanded shells and an increase in the Mid-banded morph. Neither of these evolutionary changes appears to be a direct response to climate change, indicating that the influence of other selective agents, possibly related to changing predation pressure and habitat change with effects on micro-climate

    Thermal referral: evidence for a thermoceptive uniformity illusion without touch

    Get PDF
    When warm thermal stimulators are placed on the ring and index fingers of one hand, and a neutral-temperature stimulator on the middle finger, all three fingers feel warm. This illusion is known as thermal referral (TR). On one interpretation, the heterogenous thermal signals are overridden by homogenous tactile signals. This cross-modal thermo-tactile interaction could reflect a process of object recognition, based on the prior that many objects are thermally homogenous. Interestingly, the illusion was reported to disappear when the middle digit was lifted off the thermal stimulator, suggesting that tactile stimulation is necessary. However, no study has investigated whether purely thermal stimulation might induce TR, without any tactile object to which temperature can be attributed. We used radiant thermal stimulation to deliver purely thermal stimuli, which either were or were not accompanied by simultaneous touch. We found identical TR effects in both the original thermo-tactile condition, and in a purely thermoceptive condition where no tactile object was present. Control experiments ruled out explanations based on poor spatial discrimination of warm signals. Our purely thermoceptive results suggest that TR could reflect low-level organization of the thermoceptive pathway, rather than a cognitive intermodal modulation based on tactile object perception

    Interoception in anxiety and depression

    Get PDF
    We review the literature on interoception as it relates to depression and anxiety, with a focus on belief, and alliesthesia. The connection between increased but noisy afferent interoceptive input, self-referential and belief-based states, and top-down modulation of poorly predictive signals is integrated into a neuroanatomical and processing model for depression and anxiety. The advantage of this conceptualization is the ability to specifically examine the interface between basic interoception, self-referential belief-based states, and enhanced top-down modulation to attenuate poor predictability. We conclude that depression and anxiety are not simply interoceptive disorders but are altered interoceptive states as a consequence of noisily amplified self-referential interoceptive predictive belief states

    An approach for valid covariance estimation via the Fourier series

    No full text
    The use of kriging for construction of prediction or risk maps requires estimating the dependence structure of the random process, which can be addressed through the approximation of the covariance function. The nonparametric estimators used for the latter aim are not necessarily valid to solve the kriging system, since the positive-definiteness condition of the covariance estimator typically fails. The usage of a parametric covariance instead may be attractive at first because of its simplicity, although it may be affected by misspecification. An alternative is suggested in this paper to obtain a valid covariance from a nonparametric estimator through the Fourier series tool, which involves two issues: estimation of the Fourier coefficients and selection of the truncation point to determine the number of terms in the Fourier expansion. Numerical studies for simulated data have been conducted to illustrate the performance of this approach. In addition, an application to a real environmental data set is included, related to the presence of nitrate in groundwater in Beja district (Portugal), so that pollution maps of the region are generated by solving the kriging equations with the use of the Fourier series estimates of the covariance.Universidade do Minho. Centro de Investigação de Matemática (CMAT)Fundação para a Ciência e a Tecnologia (FCT

    Segregation of glutamatergic and cholinergic transmission at the mixed motoneuron Renshaw cell synapse

    Get PDF
    In neonatal mice motoneurons excite Renshaw cells by releasing both acetylcholine (ACh) and glutamate. These two neurotransmitters activate two types of nicotinic receptors (nAChRs) (the homomeric α7 receptors and the heteromeric α*ß* receptors) as well as the two types of glutamate receptors (GluRs) (AMPARs and NMDARs). Using paired recordings, we confirm that a single motoneuron can release both transmitters on a single post-synaptic Renshaw cell. We then show that co-transmission is preserved in adult animals. Kinetic analysis of miniature EPSCs revealed quantal release of mixed events associating AMPARs and NMDARs, as well as α7 and α*ß* nAChRs, but no evidence was found for mEPSCs associating nAChRs with GluRs. Bayesian Quantal Analysis (BQA) of evoked EPSCs showed that the number of functional contacts on a single Renshaw cell is more than halved when the nicotinic receptors are blocked, confirming that the two neurotransmitters systems are segregated. Our observations can be explained if ACh and glutamate are released from common vesicles onto spatially segregated post-synaptic receptors clusters, but a pre-synaptic segregation of cholinergic and glutamatergic release sites is also possible
    corecore