20 research outputs found

    Thermal and mechanical characterization of epoxy resins (ELO and ESO) cured with anhydrides

    Full text link
    In this work we have developed polymeric materials from epoxidized vegetable oils in order to obtain materials with excellent mechanical properties for use as green matrix composites. Epoxidized soybean oil (ESO), epoxidized linseed oil (ELO) and different mixtures of the two oils were used to produce the polymers. Phthalic anhydride (17 mol%) and maleic anhydride (83 mol%) which has a eutectic reaction temperature of 48 °C were used as crosslinking agents while benzyl dimethyl amine (BDMA) and ethylene glycol were used as the catalyst and initiator, respectively. The results showed that samples 100ELO and 80ELO20ESO could be used as a matrix in green composites because they demonstrated good mechanical properties. © 2012 AOCS (outside the USA).This work is part of the project IPT-310000-2010-037,''ECOTEXCOMP: Research and development of textile structures useful as reinforcement of composite materials with marked ecological character'' funded by the "Ministerio de Ciencia e Innovacion", with financial aid of 189,540.20 EUR, within the "Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica 2008-2011" and funded by the European Union through FEDER funds, Technology Fund 2007-2013, Operational Programme on R + D + i for and on behalf of the companies.Samper Madrigal, MD.; Fombuena Borrás, V.; Boronat Vitoria, T.; García Sanoguera, D.; Balart Gimeno, RA. (2012). Thermal and mechanical characterization of epoxy resins (ELO and ESO) cured with anhydrides. Journal of the American Oil Chemists' Society. 89(8):1521-1528. https://doi.org/10.1007/s11746-012-2041-yS15211528898Averous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci Polym Rev C44:231–274Bledzki AK, Jaszkiewicz A (2010) Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibres—a comparative study to PP. Compos Sci Technol 70:1687–1696Raquez JM, Deleglise M, Lacrampe MF, Krawczak P (2010) Thermosetting (bio)materials derived from renewable resources: a critical review. Prog Polym Sci 35:487–509Charlet K, Jernot JP, Gomina M, Bizet L, Breard J (2010) Mechanical properties of flax fibers and of the derived unidirectional composites. J Compos Mater 44:2887–2896Barreto ACH, Esmeraldo MA, Rosa DS, Fechine PBA, Mazzetto SE (2010) Cardanol biocomposites reinforced with jute fiber: microstructure, biodegradability, and mechanical properties. Polym Compos 31:1928–1937Thakur VK, Singha AS (2010) Physico-chemical and mechanical characterization of natural fibre reinforced polymer composites. Iran Polym J 19:3–16Schmitz WR, Wallace JG (1954) Epoxidation of methyl oleate with hydrogen peroxide. J Am Oil Chem Soc 31:363–365La Scala J, Wool RP (2002) Effect of FA composition on epoxidation kinetics of TAG. J Am Oil Chem Soc 79:373–378de Espinosa LM, Ronda JC, Galia M, Cadiz V (2008) A new enone-containing triglyceride derivative as precursor of thermosets from renewable resources. J Polym Sci Pol Chem 46:6843–6850Gerbase AE, Petzhold CL, Costa APO (2002) Dynamic mechanical and thermal behavior of epoxy resins based on soybean oil. J Am Oil Chem Soc 79:797–802Boquillon N, Fringant C (2000) Polymer networks derived from curing of epoxidised linseed oil: influence of different catalysts and anhydride hardeners. Polymer 41:8603–8613Montserrat S, Flaque C, Calafell M, Andreu G, Malek J (1995) Influence of the accelerator concentration on the curing reaction of an epoxy-anhydride system. Thermochim Acta 269:213–229Zacharuk M, Becker D, Coelho LAF, Pezzin SH (2011) Study of the reaction between polyethylene glycol and epoxy resins using N,N-dimethylbenzylamine as catalyst. Polimeros 21:73–77Lozada Z, Suppes GJ, Tu YC, Hsieh FH (2009) Soy-based polyols from oxirane ring opening by alcoholysis reaction. J Appl Polym Sci 113:2552–256

    Beyond traditional surveillance: applying syndromic surveillance to developing settings – opportunities and challenges

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>All countries need effective disease surveillance systems for early detection of outbreaks. The revised International Health Regulations [IHR], which entered into force for all 194 World Health Organization member states in 2007, have expanded traditional infectious disease notification to include surveillance for public health events of potential international importance, even if the causative agent is not yet known. However, there are no clearly established guidelines for how countries should conduct this surveillance, which types of emerging disease syndromes should be reported, nor any means for enforcement.</p> <p>Discussion</p> <p>The commonly established concept of syndromic surveillance in developed regions encompasses the use of pre-diagnostic information in a near real time fashion for further investigation for public health action. Syndromic surveillance is widely used in North America and Europe, and is typically thought of as a highly complex, technology driven automated tool for early detection of outbreaks. Nonetheless, low technology applications of syndromic surveillance are being used worldwide to augment traditional surveillance.</p> <p>Summary</p> <p>In this paper, we review examples of these novel applications in the detection of vector-borne diseases, foodborne illness, and sexually transmitted infections. We hope to demonstrate that syndromic surveillance in its basic version is a feasible and effective tool for surveillance in developing countries and may facilitate compliance with the new IHR guidelines.</p

    Valorisation of Biowastes for the Production of Green Materials Using Chemical Methods

    Get PDF
    With crude oil reserves dwindling, the hunt for a sustainable alternative feedstock for fuels and materials for our society continues to expand. The biorefinery concept has enjoyed both a surge in popularity and also vocal opposition to the idea of diverting food-grade land and crops for this purpose. The idea of using the inevitable wastes arising from biomass processing, particularly farming and food production, is, therefore, gaining more attention as the feedstock for the biorefinery. For the three main components of biomass—carbohydrates, lipids, and proteins—there are long-established processes for using some of these by-products. However, the recent advances in chemical technologies are expanding both the feedstocks available for processing and the products that be obtained. Herein, this review presents some of the more recent developments in processing these molecules for green materials, as well as case studies that bring these technologies and materials together into final products for applied usage

    Stereoselective polymerization of butadiene by a new dicationic nickel complex

    No full text
    The new dicationic nickel complex [dppfNi(MeCN)(4)[BF4](2) (dppf = 1,1'-bis(diphenylphosphino)ferrocene) in the presence of diethylaluminium chloride (AlEt(2)Cl) exhibited high activity on the 1,3-butadiene polymerization. Reaction time, temperature and aluminium/nickel molar ratio were optimized in order to achieve maximum activity and selectivity. Conversions higher than 90% were obtained in contrast to other nickel-based systems using phosphine ligands, the resulting polybutadiene showed high cis-1,4 (>80%) content and only small amount of 1,2-units (2%). All polymers presented low molecular weights (M(w) < 11800).239334

    Preparation, characterization and electrochemical studies of 1,1'-bis(diphenylphosphino)ferrocene (dppf) derivatives. Crystal structure of [dppfCo(NO)(2)][SbF6]

    No full text
    The neutral dppfFe(NO)(2) (1), the novel cationic [dppfCo(NO)(2)][SbF6] (2), as well as the dppfFe(CO)(3) (3) (dppf = 1,1'-bis(diphenylphosphino)ferrocene) complexes were prepared and characterized. The interaction between the two metallic centers through the dppf ligand was studied in the solid state by Fe-57 Mossbauer spectroscopy and in solution by cyclic voltammetry. The Mossbauer parameters are compared with those of other dppfML(n) complexes. Electrochemical studies performed on these complexes show the great influence of the MLn moiety on the redox processes of the dppf iron center. The crystal structure of complex 2 was determined (C34H28CoF6FeN2O2P2Sb). The compound crystallizes in the triclinic, space group , a = 10.441 (2), b = 10.755(2), c = 17.320(5) Angstrom, alpha = 104.10(2), beta = 0.504(10), gamma = 111.504(10)degrees, U = 1744.7(7) Angstrom(3), Z = 2, R = 0.0765, wR2 = 0.1878. In this complex, the cobalt atom is coordinated to two nitrosyl ligands and to phosphorus atoms of the dppf ligand, providing a distorted tetrahedral geometry. (C) 1997 Elsevier Science S.A.2661192

    Sexually transmitted infections, bacterial vaginosis, and candidiasis in women of reproductive age in rural Northeast Brazil: a population-based study

    No full text
    Population-based data on sexually transmitted infections (STI), bacterial vaginosis (BV), and candidiasis reflect the epidemiological situation more accurately than studies performed in specific populations, but such data are scarce. To determine the prevalence of STI, BV, and candidiasis among women of reproductive age from a resource-poor community in Northeast Brazil, a population-based cross sectional study was undertaken. All women from seven hamlets and the centre of Pacoti municipality in the state of Ceará, aged 12 to 49 years, were invited to participate. The women were asked about socio-demographic characteristics and genital symptoms, and thereafter examined gynaecologically. Laboratory testing included polymerase chain reaction (PCR) for human papillomavirus (HPV), ligase chain reaction (LCR) for Chlamydia trachomatis and Neisseria gonorrhoeae, ELISA for human immunodeficiency virus (HIV), venereal disease research laboratory (VDRL) and fluorescent treponema antibody absorption test (FTA-ABS) for syphilis, and analysis of wet mounts, gram stains and Pap smears for trichomoniasis, candidiasis, and BV. Only women who had initiated sexual life were included in the analysis (n = 592). The prevalences of STI were: HPV 11.7% (95% confidence interval: 9.3-14.7), chlamydia 4.5% (3.0-6.6), trichomoniasis 4.1% (2.7-6.1), gonorrhoea 1.2% (0.5-2.6), syphilis 0.2% (0.0-1.1), and HIV 0%. The prevalence of BV and candidiasis was 20% (16.9-23.6) and 12.5% (10.0-15.5), respectively. The most common gynaecological complaint was lower abdominal pain. STI are common in women in rural Brazil and represent an important health threat in view of the HIV pandemic

    Properties of Biobased Epoxy Resins from Epoxidized Soybean Oil (ESBO) Cured with Maleic Anhydride (MA)

    Full text link
    [EN] Epoxidized soybean oil (ESBO), obtained from a renewable resource was used in the production of thermoset resins. Samples of the ESBO were initially treated with maleic anhydride, equal mixture of catalyst (1,3-butanediol anhydrous and benzyldimethylamine) and the mixture was cured for 5 h at different temperatures. After the curing process, the ratio between the ESBO and the anhydride (ratio EEW:AEW) was evaluated in terms of the different mechanical properties produced using flexural, Shore D hardness and Charpy impact tests. The sample with the best mechanical properties was that with an EEW:AEW ratio of 1:1.0 which leads to best balanced behavior and this could be representative for the maximum crosslinking degree. Also, thermal characteristics were evaluated during the crosslinking process using differential scanning calorimetry, In addition, other thermal characteristics of the cured materials were obtained by determining the heat deflection temperature and the Vicat softening temperature. The coefficient of thermal expansion was determined using thermo-mechanical analysis. In accordance with the mechanical behavior, the best thermal properties were obtained for samples with an EEW:AEW ratio of 1:1.0. As a result of this work, a biologically based epoxy resin with good mechanical properties and flexibility was obtained. © AOCS 2012.This research is part of the IPT-310000-2010-037, "ECOTEXCOMP: research and development of textile structures applicable as reinforcement in compound materials of an ecological nature" project, financed by the Ministry of Science and Innovation, with a grant of 189,540.20 EUR, as part of the National Scientific Research, Development and Technological Innovation 2008-2011 plan, co-financed by the European Union through FEDER, Technology fund 2007-2013, Operative Program of R and D to benefit companies. J. M. Espana gives thanks to the Polytechnic University of Valencia (UPV) for their financial support through an FPI-UPV grant.España Giner, JM.; Sánchez Nacher, L.; Boronat Vitoria, T.; Fombuena Borrás, V.; Balart Gimeno, RA. (2012). Properties of Biobased Epoxy Resins from Epoxidized Soybean Oil (ESBO) Cured with Maleic Anhydride (MA). Journal of the American Oil Chemists' Society. 89(11):2067-2075. https://doi.org/10.1007/s11746-012-2102-2S206720758911Mbaraka IK, Shanks BH (2006) Conversion of oils and fats using advanced mesoporous heterogeneous catalysts. J Am Oil Chem Soc 83:79–91Kumar MNS, Yaakob Z, Mohan N, Siddaramaiah, Babu SPK (2010) Mechanical and abrasive wear studies on biobased jatropha oil cake incorporated glass-epoxy composites. J Am Oil Chem Soc 87:929–936Li YT, Fu LY, Lai SF, Cai XC, Yang LT (2010) Synthesis and characterization of cast resin based on different saturation epoxidized soybean oil. Eur J Lipid Sci Technol 112:511–516Teng GH, Soucek MD (2000) Epoxidized soybean oil-based ceramer coatings. J Am Oil Chem Soc 77:381–387Zhu J, Chandrashekhara K, Flanigan V, Kapila S (2004) Manufacturing and mechanical properties of soy-based composites using pultrusion. Compos Part A: Appl Sci Manuf 35:95–101Rocks J, Rintoul L, Vohwinkel F, George G (2004) The kinetics and mechanism of cure of an amino-glycidyl epoxy resin by a co-anhydride as studied by FT-Raman spectroscopy. Polymer 45:6799–6811Jin FL, Park SJ (2008) Thermomechanical behavior of epoxy resins modified with epoxidized vegetable oils. Polym Int 57:577–583Gupta AP, Ahmad S, Dev A (2010) Development of novel bio-based soybean oil epoxy resins as a function of hardener stoichiometry. Polym Plast Techn Eng 49:657–661Costa APO, Gerbase AE, Petzhold CL (2011) Investigation of the kinetics of cure by differential scanning calorimetry (DSC) of epoxy resins prepared from epoxidized soybean oil with different anhydrides and tertiary amines. Polimeros Ciencia E Tecnologia 21:146–150Lu J, Khot S, Wool RP (2005) New sheet molding compound resins from soybean oil. I: synthesis and characterization. Polymer 46:71–80Miyagawa H, Misra M, Drzal LT, Mohanty AK (2005) Fracture toughness and impact strength of anhydride-cured biobased epoxy. Polym Eng Sci 45:487–495Zhan GZ, Zhao L, Hu S, Gan WJ, Yu YF, Tang XL (2008) A novel biobased resin-epoxidized soybean oil modified cyanate ester. Polym Eng Sci 48:1322–1328Jin FL, Park SJ (2008) Impact-strength improvement of epoxy resins reinforced with a biodegradable polymer. Mater Sci Eng A: Struct Mater Prop Microstruct Process 478:402–405Tan SG, Chow WS (2011) Curing characteristics and thermal properties of epoxidized soybean oil based thermosetting resin. J Am Oil Chem Soc 88:915–923Wang JH, Liang GZ, Yan HX, He SB, Yang LL (2010) Influence of the ratio of epoxy/cyanate ester on the curing behavior of epoxy/dicyclopentadiene bisphenol cyanate ester system. High Perform Polym 22:286–298Miyagawa H, Mohanty AK, Misra M, Drzal LT (2004) Thermo-physical and impact properties of epoxy containing epoxidized linseed oil, 1: anhydride-cured epoxy. Macromol Mater Eng 289:629–635Miyagawa H, Mohanty AK, Misra M, Drzal LT (2004) Thermo-physical and impact properties of epoxy containing epoxidized linseed oil, 2(a): amine-cured epoxy. Macromol Mater Eng 289:636–641Jin FL, Park SJ (2008) Fracture toughness of difunctional epoxy resin/thermally latent initiator system modified with polyesters. J Ind Eng Chem 14:564–567Liu ZS, Erhan SZ, Calve PD (2004) Solid freeform fabrication of epoxidized soybean oil/epoxy composites with di-, tri-, and polyethylene amine curing agents. J Appl Polym Sci 93:356–363Zhu J, Chandrashekhara K, Flanigan V, Kapila S (2004) Curing and mechanical characterization of a soy-based epoxy resin system. J Appl Polym Sci 91:3513–3518Czub P (2008) Epoxy compositions with use of modified vegetable oils. Polimery 53:182–189Cai S-F, Wang L-S (2011) Epoxidation of soybean oil catalyzed by pi-C(5)H(5)NC(16)H(33) (3) PW(4)O(16) with hydrogen peroxide and ethyl acetate as solvent. Nat Prod Commun 6:1141–1143Nimbalkar RV, Athawale VD (2010) Synthesis and characterization of canola oil alkyd resins based on novel acrylic monomer (ATBS). J Am Oil Chem Soc 87:947–954Liu ZS, Erhan SZ, Calvert PD (2004) Solid freeform fabrication of soybean oil-based composites reinforced with clay and fibers. J Am Oil Chem Soc 81:605–610Gerbase AE, Petzhold CL, Costa APO (2002) Dynamic mechanical and thermal behavior of epoxy resins based on soybean oil. J Am Oil Chem Soc 79:797–802Park SJ, Jin FL, Lee JR (2004) Effect of biodegradable epoxidized castor oil on physicochemical and mechanical properties of epoxy resins. Macromol Chem Phys 205:2048–205
    corecore