540 research outputs found

    Comparison of 20nm silver nanoparticles synthesized with and without a gold core: Structure, dissolution in cell culture media, and biological impact on macrophages

    Get PDF
    Widespread use of silver nanoparticles raises questions of environmental and biological impact. Many synthesis approaches are used to produce pure silver and silver-shell gold-core particles optimized for specific applications. Since both nanoparticles and silver dissolved from the particles may impact the biological response, it is important to understand the physicochemical characteristics along with the biological impact of nanoparticles produced by different processes. The authors have examined the structure, dissolution, and impact of particle exposure to macrophage cells of two 20 nm silver particles synthesized in different ways, which have different internal structures. The structures were examined by electron microscopy and dissolution measured in Rosewell Park Memorial Institute media with 10% fetal bovine serum. Cytotoxicity and oxidative stress were used to measure biological impact on RAW 264.7 macrophage cells. The particles were polycrystalline, but 20 nm particles grown on gold seed particles had smaller crystallite size with many high-energy grain boundaries and defects, and an apparent higher solubility than 20 nm pure silver particles. Greater oxidative stress and cytotoxicity were observed for 20 nm particles containing the Au core than for 20 nm pure silver particles. A simple dissolution model described the time variation of particle size and dissolved silver for particle loadings larger than 9 μg/ml for the 24-h period characteristic of many in-vitro studies

    Uncovering Natural Supersymmetry via the interplay between the LHC and direct Dark Matter detection

    Get PDF
    We have explored Natural Supersymmetry (NSUSY) scenarios with low values of the μ parameter which are characterised by higgsino-like Dark Matter (DM) and compressed spectra for the lightest MSSM particles, χ10, χ20 and χ1±. This scenario could be probed via monojet signatures, but as the signal-to-background ratio (S/B) is low we demonstrate that the 8 TeV LHC cannot obtain limits on the DM mass beyond those of LEP2. On the other hand, we have found, for the 13 TeV run of the LHC, that by optimising kinematical cuts we can bring the S/B ratio up to the 5(3)% level which would allow the exclusion of the DM mass up to 200(250) GeV respectively, significantly extending LEP2 limits. Moreover, we have found that LUX/XENON1T and LHC do play very complementary roles in exploring the parameter space of NSUSY, as the LHC has the capability to access regions where DM is quasi-degenerate with other higgsinos, which are challenging for direct detection experiments

    A Hybrid Higgs

    Get PDF
    We construct composite Higgs models admitting a weakly coupled Seiberg dual description. We focus on the possibility that only the up-type Higgs is an elementary field, while the down-type Higgs arises as a composite hadron. The model, based on a confining SQCD theory, breaks supersymmetry and electroweak symmetry dynamically and calculably. This simultaneously solves the \mu/B_\mu problem and explains the smallness of the bottom and tau masses compared to the top mass. The proposal is then applied to a class of models where the same confining dynamics is used to generate the Standard Model flavor hierarchy by quark and lepton compositeness. This provides a unified framework for flavor, supersymmetry breaking and electroweak physics. The weakly coupled dual is used to explicitly compute the MSSM parameters in terms of a few microscopic couplings, giving interesting relations between the electroweak and soft parameters. The RG evolution down to the TeV scale is obtained and salient phenomenological predictions of this class of "single-sector" models are discussed.Comment: 56 pages, 7 figures, v2: discussion on FCNCs and references added, v3: JHEP versio

    Mixed Mediation of Supersymmetry Breaking with Anomalous U(1) Gauge Symmetry

    Full text link
    Models with anomalous U(1) gauge symmetry contain various superfields which can have nonzero supersymmetry breaking auxiliary components providing the origin of soft terms in the visible sector, e.g. the U(1) vector superfield, the modulus or dilaton superfield implementing the Green-Schwarz anomaly cancellation mechanism, U(1)-charged but standard model singlet matter superfield required to cancel the Fayet-Iliopoulos term, and finally the supergravity multiplet. We examine the relative strength between these supersymmetry breaking components in a simple class of models, and find that various different mixed mediations of supersymmetry breaking, involving the modulus, gauge, anomaly and D-term mediations, can be realized depending upon the characteristics of D-flat directions and how those D-flat directions are stabilized with a vanishing cosmological constant. We identify two parameters which represent such properties and thus characterize how the various mediations are mixed. We also discuss the moduli stabilization and soft terms in a variant of KKLT scenario, in which the visible sector K\"ahler modulus is stabilized by the D-term potential of anomalous U(1) gauge symmetry.Comment: 30 pages, 5 figure

    Wolbachia in the flesh: symbiont intensities in germ-line and somatic tissues challenge the conventional view of Wolbachia transmission routes

    Get PDF
    Symbionts can substantially affect the evolution and ecology of their hosts. The investigation of the tissue-specific distribution of symbionts (tissue tropism) can provide important insight into host-symbiont interactions. Among other things, it can help to discern the importance of specific transmission routes and potential phenotypic effects. The intracellular bacterial symbiont Wolbachia has been described as the greatest ever panzootic, due to the wide array of arthropods that it infects. Being primarily vertically transmitted, it is expected that the transmission of Wolbachia would be enhanced by focusing infection in the reproductive tissues. In social insect hosts, this tropism would logically extend to reproductive rather than sterile castes, since the latter constitute a dead-end for vertically transmission. Here, we show that Wolbachia are not focused on reproductive tissues of eusocial insects, and that non-reproductive tissues of queens and workers of the ant Acromyrmex echinatior, harbour substantial infections. In particular, the comparatively high intensities of Wolbachia in the haemolymph, fat body, and faeces, suggest potential for horizontal transmission via parasitoids and the faecal-oral route, or a role for Wolbachia modulating the immune response of this host. It may be that somatic tissues and castes are not the evolutionary dead-end for Wolbachia that is commonly thought

    Aspects of Non-minimal Gauge Mediation

    Full text link
    A large class of non-minimal gauge mediation models, such as (semi-)direct gauge mediation, predict a hierarchy between the masses of the supersymmetric standard model gauginos and those of scalar particles. We perform a comprehensive study of these non-minimal gauge mediation models, including mass calculations in semi-direct gauge mediation, to illustrate these features, and discuss the phenomenology of the models. We point out that the cosmological gravitino problem places stringent constraints on mass splittings, when the Bino is the NLSP. However, the GUT relation of the gaugino masses is broken unlike the case of minimal gauge mediation, and an NLSP other than the Bino (especially the gluino NLSP) becomes possible, relaxing the cosmological constraints. We also discuss the collider signals of the models.Comment: 56 pages, 8 figures; v2:minor corrections, references added; v3:minor correction

    A Profile Likelihood Analysis of the Constrained MSSM with Genetic Algorithms

    Full text link
    The Constrained Minimal Supersymmetric Standard Model (CMSSM) is one of the simplest and most widely-studied supersymmetric extensions to the standard model of particle physics. Nevertheless, current data do not sufficiently constrain the model parameters in a way completely independent of priors, statistical measures and scanning techniques. We present a new technique for scanning supersymmetric parameter spaces, optimised for frequentist profile likelihood analyses and based on Genetic Algorithms. We apply this technique to the CMSSM, taking into account existing collider and cosmological data in our global fit. We compare our method to the MultiNest algorithm, an efficient Bayesian technique, paying particular attention to the best-fit points and implications for particle masses at the LHC and dark matter searches. Our global best-fit point lies in the focus point region. We find many high-likelihood points in both the stau co-annihilation and focus point regions, including a previously neglected section of the co-annihilation region at large m_0. We show that there are many high-likelihood points in the CMSSM parameter space commonly missed by existing scanning techniques, especially at high masses. This has a significant influence on the derived confidence regions for parameters and observables, and can dramatically change the entire statistical inference of such scans.Comment: 47 pages, 8 figures; Fig. 8, Table 7 and more discussions added to Sec. 3.4.2 in response to referee's comments; accepted for publication in JHE

    Mindfulness-Based Childbirth and Parenting Education: Promoting Family Mindfulness During the Perinatal Period

    Get PDF
    We present the conceptual and empirical foundation and curriculum content of the Mindfulness-Based Childbirth and Parenting (MBCP) program and the results of a pilot study of n = 27 pregnant women participating in MBCP during their third trimester of pregnancy. MBCP is a formal adaptation of the Mindfulness-Based Stress Reduction program and was developed and refined over the course of 11 years of clinical practice with 59 groups of expectant couples. MBCP is designed to promote family health and well-being through the practice of mindfulness during pregnancy, childbirth, and early parenting. Quantitative results from the current study include statistically significant increases in mindfulness and positive affect, and decreases in pregnancy anxiety, depression, and negative affect from pre- to post-test (p < .05). Effect sizes for changes in key hypothesized intervention mediators were large (d > .70), suggesting that MBCP is achieving its intended effects on maternal well-being during pregnancy. Qualitative reports from participants expand upon the quantitative findings, with the majority of participants reporting perceived benefits of using mindfulness practices during the perinatal period and early parenting. Our future research will involve conducting a randomized controlled trial of MBCP to test effects on psychophysiological stress mechanisms and to examine effects on birth outcomes, family relationship quality, and child development outcomes

    Revisiting superparticle spectra in superconformal flavor models

    Full text link
    We study superparticle spectra in the superconformal flavor scenario with non-universal gaugino masses. The non-universality of gaugino masses can lead to the wino-like or higgsino-like neutralino LSP. Furthermore, it is shown that the parameter space for the higgsino-like LSP includes the region where the fine-tuning problem can be improved. The degeneracy of soft scalar masses squared does not drastically change by taking ratios of gaugino masses of order one. The degeneracy of scalar masses for squarks and left-handed sleptons would be good to avoid the FCNC problem but that of right-handed slepton masses is weak. However, the overall size of right-handed slepton masses become larger when the bino becomes heavier. It is also pointed out that such region can be realized, and thus, that would be favorable to avoid the FCNC problem for soft scalar masses as well as A-terms.Comment: 18 pages, 12 figures, reference added, minor correction
    corecore