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1 Introduction

The Standard Model (SM) has deep theoretical puzzles that hint toward the existence of a

more fundamental microscopic theory. First, the SM fermions exhibit very special patterns

of Yukawa couplings; the origin of these “flavor spurions” is unknown. Another central

question concerns the hierarchy between the Fermi and Planck scales. Supersymmetry of-

fers a very attractive mechanism for stabilizing MZ , but does not explain its origin. Fits to

precision electroweak data suggest a weakly coupled Higgs and in the SM its mass is a free

parameter whose origin is unknown. There are various solutions to each of these problems

separately, but the different mechanisms are in general hard to combine. Nevertheless, try-

ing to find a single unified framework addressing these puzzles can reveal new connections

between flavor, supersymmetry breaking and Higgs physics, as well as providing windows

into high energy physics.

Based on [1–3], the authors of [4] proposed a realistic “single-sector” model where

the dynamics that explains the texture of fermion masses also breaks supersymmetry.1

The confining dynamics is given by supersymmetric QCD with fundamental flavors plus

a field in the adjoint representation, in the free magnetic phase. The hierarchies in the

Yukawa matrices are explained by postulating that the first and second SM generations are

composite mesons of different UV dimensions, while the third generation is elementary.2

Supersymmetry is broken dynamically using a variant of the mechanism found by Intrili-

gator, Seiberg and Shih (ISS) [12]. The model is fully calculable and realistic, avoids flavor

problems and produces a low energy spectrum similar to the “more minimal” supersym-

metric SM of [13, 14].

The original motivation of this work was to study the Higgs sector that could arise in

the single sector models of [4]. However, the dynamical mechanism that we found turns

out to be quite generic and simple, and can be applied to theories with a flavor sector

different from the one in [4]. We will argue that SQCD with fundamental flavors in the

free magnetic phase has the required structure to produce a composite Higgs model that

breaks the electroweak symmetry dynamically and calculably, and naturally solves the

µ/Bµ problem.3

1The original models of [1, 2] contained strongly coupled incalculable effects; in [3] it was understood

how to construct calculable single sector models.
2SUSY models using compositeness to explain the flavor hierarchies were constructed in [5, 6]; related

ideas make use of conformal dynamics [7–10]. AdS/CFT can also be used to understand the generation

of flavor hierarchies at strong coupling; see e.g. [11]. We refer the reader to [4] for a recent overview of

approaches to the flavor problem.
3See [15] for a recent analysis and references for this problem in the context of gauge mediation.
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Therefore, the first part of the paper (sections 2 and 3) will be devoted to presenting

the mechanism for dynamical EWSB in its simplest and minimal form, independently of

the flavor sector. The precise low energy phenomenology at the TeV scale depends on the

spectrum and couplings to the (supersymmetric) SM particles, a well-known example being

the sensitivity of the Higgs to top/stop effects. In the second part of the work (starting from

section 4), we will show how our proposal naturally combines with the single sector models

of [4], yielding a unified and realistic explanation for flavor, supersymmetry breaking and

Higgs physics.

The model has various interesting properties, stemming from the fact that the strong

dynamics responsible for the breaking of SU(2)×U(1) also produces the fermion masses and

mixings and breaks supersymmetry. For instance, the EW scale is tied to the supersym-

metry scale via a coupling which is also responsible for producing the Yukawa interactions.

The µ term is related to the scale of R-symmetry breaking and gaugino masses. The RG

evolution of the theory down to the TeV scale presents various special features, studied in

section 5. Section 6 presents the low energy phenomenology and a scan over parameter

space, with particular emphasis on the nature of the NLSP. Before proceeding, it is useful

to summarize the basic ideas and present an overview of the model.

1.1 The basic mechanism

Strongly coupled gauge theories have a very elegant mechanism for generating exponentially

small hierarchies,

ΛIR ∼ e−g
2

IR
/g2

UV ΛUV .

Both dynamical supersymmetry breaking and technicolor exploit this fact. In the latter

case, the electroweak scale is generated by identifying the Higgs field with a technifermion

bilinear H ≡ ψ̄ψ which condenses due to nonperturbative effects from a technicolor gauge

group GTC [16–18].

Technicolor constructions generically face the problem of new strongly coupled dynam-

ics close to the TeV scale. Some of the difficulties are overcome if the physical dimension of

H is close to one (e.g. walking technicolor), although this limit is also somewhat problem-

atic. Unitarity implies that H must become free when its dimension is equal to one, but in

4d it is challenging to find a realistic technicolor theory supporting weakly coupled subsec-

tors. Furthermore, the operator H∗H becomes relevant and the hierarchy and fine-tuning

problems reappear.

These points can in principle be resolved in a supersymmetric context. Weakly coupled

subsectors are quite common in supersymmetric confining gauge theories — the simplest

being SQCD in the free magnetic phase. And, of course, one of the main motivations

for supersymmetry is that it stabilizes the Fermi scale, making the theory natural up to

extremely high scales. Our goal (in sections 2 and 3) is to construct a supersymmetric

model admitting a weakly coupled description at long distances, that breaks SU(2)×U(1)

and supersymmetry dynamically.

Our main example for the short distance theory is SQCD with gauge group SU(Nc)

and Nf fundamental flavors (Q, Q̃) in the free magnetic range Nc + 1 ≤ Nf <
3
2Nc, the
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“electric theory”. The low energy theory admits a dual “magnetic” description in terms

of weakly coupled mesons and baryons, and has a large unbroken symmetry group. After

weakly gauging a subgroup and identifying it with the SM gauge group, one of the Higgs

fields will arise from the composite meson,

H ⊂ (QQ̃) .

The magnetic description implies that the dimension of H approaches 1 in the IR. Fur-

thermore, chiral symmetries and supersymmetry forbid explicit mass terms. The role of

the technifermion bilinear is now played by a scalar (superfield) bilinear.

More precisely, we postulate that the up-type Higgs Hu is an elementary field, while

Hd arises as a composite meson in the SQCD theory — in short, a “hybrid Higgs” sector.

Other components of this meson field break supersymmetry as in [12]. The magnetic theory

is described by an O’Raifeartaigh model (with composite messengers and direct mediation)

plus interactions between the Higgs fields and dimension two messenger operators O. The

superpotential has the form

Wmag = WO′R + λdHdOd + λuHuOu , (1.1)

where WO′R describes the O’Raifeartaigh fields. In our proposal, the coupling HdOd is

dictated by Seiberg duality, with λd ∼ 1. On the other hand, the interactions of the

elementary Hu with the supersymmetry breaking fields are generated by deforming the mi-

croscopic theory with an operator HuOu that is irrelevant in the UV. While the dimension

of Hu is always close to one, at long distance Ou will flow to a dimension 2 operator. This

generates a marginal coupling with a naturally small λu ≪ 1.

We will argue that this low energy description of SQCD has the correct structure to

simultaneously break supersymmetry and the electroweak symmetry. The dynamical break-

ing is produced, in the magnetic description, by the Coleman-Weinberg mechanism [19].

The hypothesis that Hu is elementary and Hd is composite provides a simple explana-

tion for the following points:

• The hierarchy between the top and bottom/tau masses is generated naturally if Hd is

composite (as well as part of the SM matter), while Hu is still taken to be elementary.

• Hd will have parametrically large mixings with the supersymmetry breaking sector

that lead to m2
Hd

≫ m2
Hu

. As observed in [20, 21], this helps to solve the µ/Bµ
problem.

From a bottom-up perspective, this possibility appeared e.g. in the more minimal scenarios

of [13], and its relevance for the µ/Bµ problem was recently understood in [21].

Recall that minimizing the tree level Higgs potential requires

1

2
m2
Z = −|µ|2 −

m2
Hu

tan2 β −m2
Hd

tan2 β − 1

sin 2β =
2Bµ

2|µ2| +m2
Hu

+m2
Hd

.

(1.2)
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Generically in gauge-mediated models, the tree-level µ and Bµ are forbidden, e.g. by a PQ

symmetry, and are dynamically generated at one-loop, implying that Bµ ∼ 16π2µ2. This

entails however, that there is no natural solution to the above relations (1.2).

The mass hierarchy generated in the magnetic theory (1.1) on the other hand is

m2
Hu

≪ Bµ ≪ m2
Hd

(1.3)

and, at the origin of field space, m2
Hu

< 0, triggers EWSB. Ref. [21] argued that for

adequate scalings of the soft parameters, the hierarchy (1.3) provides a viable solution

to (1.2). The theory has an approximate R-symmetry under which the O’Raifeartaigh

(tree level) flat direction and Hd have R-charge 2, while Hu has charge −2. This forbids

a supersymmetric µ-term and Majorana gaugino masses. The R-symmetry will be broken

using the mechanism of [22], producing realistic gaugino and higgsino masses.

Our proposal realizes some of the ideas of [13, 20] and especially [21] in a rather generic

SQCD setup.

1.2 Overview of the model

Generating dynamically the electroweak scale does not in principle explain the pattern

of masses and mixings of the SM fermions. We adopt the point of view that the same

mechanism responsible for breaking SU(2) × U(1) should also produce the correct flavor

textures. Starting from section 4, the connection between flavor physics and the EW scale

is established by combining the hybrid Higgs theory with the single sector models of [4].

We add a field U transforming in the adjoint of the electric gauge group, with a renor-

malizable W ∼ U3 superpotential. The theory confines at a scale Λ and generates two

types of mesons, (QQ̃) and (QUQ̃). The first SM generation is identified with components

of the dimension 3 meson, the second generation and Hd arise from the dimension 2 meson,

while Hu and the third generation fields are elementary. Yukawa couplings are generated

at a scale Mflavor > Λ from superpotential couplings between the mesons and Higgs fields.

Such operators are irrelevant before the theory confines and become marginal in the in-

frared. Therefore, different Yukawa couplings are proportional to different powers of the

small ratio

ǫ = Λ/Mflavor ,

and the correct Yukawa textures are generated. The down-type Yukawas are produced at

a higher order in ǫ, explaining the smallness of mbottom/mtop dynamically.

In models where unification is possible, the dynamical scale Λ is approximately MGUT;

otherwise it could be smaller. In the class of models analyzed here, achieving unification

is difficult. It would be interesting to consider scenarios where this is naturally realized.

The scale Mflavor is roughly an order of magnitude above Λ, so that ǫ ∼ 0.1 generates the

correct Yukawa couplings.

Supersymmetry is now broken by one linear combination of the two mesons, denoted

by X, which acquires a linear term in the superpotential. From the IR point of view this is

again the ISS mechanism [12]. The model produces composite messengers; composite SM

fields couple strongly to the supersymmetry breaking sector and acquire (large) one loop

– 4 –
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masses. On the other hand, elementary fields acquire their masses predominantly from two

loop (direct) gauge mediation. In summary,

• The first and second generation sfermions and Hd have masses

m2
Q̃i

∼ m2
Hd

∼ 1

16π2
|FX | , (1.4)

where FX is the F-term of the tree level flat direction X, and the messenger masses

are of order
√

|FX |.

• Third generation sfermions and Hu have masses generated from standard gauge me-

diation at two loops,

m2
GM ∼

(
g2

16π2

)2

|FX | , (1.5)

• Gauginos and higgsinos have one loop masses proportional to the VEV of X that

breaks the R-symmetry spontaneously,

mψ ∼ 1

16π2
|X| . (1.6)

Having gaugino and sfermion masses around the TeV sets the supersymmetry break-

ing scale √
|FX | ∼ 100 − 200TeV .

This gives a light gravitino

m3/2 ∼ FX√
3MPl

∼ O(1–10 eV) . (1.7)

A typical spectrum is shown in figure 1.4

In sections 5 and 6 we describe the RG evolution from the messenger scale down to the

TeV scale. Models with inverted hierarchies and a hybrid Higgs sector have quite distinct

properties, that are studied using a combination of effective potential methods and MSSM

RGEs. This will allow us to explicitly obtain the weak scale in terms of the microscopic

parameters. Section 6 presents more detailed spectra and parameter ranges, and various

explicit computations are shown in the appendix.

2 Composite Higgs from Seiberg duality

In this section and in section 3 we present a composite Higgs model that breaks super-

symmetry and electroweak symmetry dynamically and calculably. The confining dynamics

comes from SU(Nc) SQCD with fundamental flavors, in the free magnetic range. The the-

ory will be analyzed using its weakly coupled description, which we review in section 2.1.

4Spectra with inverted hierarchies arise generically in single sector models and they help solve the flavor

problem; see [4]. Similar phenomenology can arise from a strongly coupled approximately conformal hidden

sector, as was recently analyzed in [9].
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Figure 1. Typical spectrum of the model, for tanβ ∼ 8 and higgsino NLSP.

The aim is to explain in a simple setup the dynamical mechanism relating supersymmetry

breaking to the Fermi scale. It will be argued that this naturally solves the µ/Bµ problem,

along the lines of [20, 21].

As summarized above, in section 4 an extra field transforming in the adjoint of the

electric gauge group will be added, in order to generate the Standard Model flavor hierar-

chies. This modifies the UV properties of the theory, but the long distance description of

the electroweak and supersymmetry breaking sectors will be the same as the one for the

simpler model analyzed here.

2.1 Electric and magnetic descriptions

Before introducing the Higgs sector, we start with a brief review of [23, 24]. The microscopic

theory is SQCD with gauge group SU(Nc) and Nf flavors (Qi, Q̃j) in the free magnetic

range Nc + 1 ≤ Nf <
3
2Nc, with masses mi,

Wel =

Nf∑

i=1

miQiQ̃i . (2.1)
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The quark masses are ordered |mi| > |mj| for i < j, and are chosen to be much smaller

than the dynamical scale Λ. This may be generated dynamically, as in [25, 26].

As will be explained shortly, these different quark masses will be required to ensure

the stability of our vacuum, which will differ from the ISS model by the addition of extra

singlets. Furthermore, at least 5 mass eigenvalues have to be equal, so that there is an

unbroken SU(5) global symmetry that can be identified with the SM gauge group. For our

purposes, it will be sufficient to have two different eigenvalues,

m =

(
m1 1Nf−Nc 0

0 m2 1Nc

)
(2.2)

with |m1| > |m2|. The non-anomalous global symmetries are then

SU(Nf −Nc)V × SU(Nc)V × U(1)V (2.3)

where Qi (Q̃i) have charge +1 (−1) under the baryon numer U(1)V .

We weakly gauge a subgroup of the global symmetry group and identify it with the

Standard Model gauge group,

SU(3)C × SU(2)L × U(1)Y ⊂ SU(Nc)V . (2.4)

We will find it convenient to use an SU(5) “GUT notation” as a shorthand for the SM

quantum numbers, but no assumption of unification is made.5 Furthermore, in the realistic

models of section 4, baryon number U(1)V is automatically gauged; this has the advantage

of removing a Nambu-Goldstone boson from the low energy theory.

Below the scale Λ, the theory has a dual magnetic description [23, 24] in terms of an

SQCD theory with gauge group SU(Ñc ≡ Nf−Nc), singlet mesons Φij, andNf fundamental

flavors (qi, q̃j). The theory is weakly coupled in the infrared and has superpotential

Wmag = h tr(qΦq̃) − h tr(µ̂2Φ) . (2.5)

The magnetic and electric variables are related by

QQ̃ ∼ hΛΦ , µ̂2 =

(
µ2

1 1Nf−Nc 0

0 µ2
2 1Nc

)
∼ Λ

(
m1 1Nf−Nc 0

0 m2 1Nc

)
. (2.6)

We choose the superpotential parameters to be real.

The magnetic superpotential of eq. (2.5) (as well as the one in section 4) receives

nonperturbative corrections which, in the regime |µ̂i| ≪ |Λ|, do not affect our results.

The model has a classical R-symmetry under which R(Φ) = 2, R(q) = R(q̃) = 0. This

symmetry, which becomes anomalous at the quantum level, will play an important role in

what follows. Recall also that U(1)V is gauged to remove a NG boson.

5Nevertheless, finding single sector models that can also accommodate unification is important. See [27]

for an analysis of this point.
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2.2 Dynamical supersymmetry breaking

Intriligator, Seiberg and Shih (ISS) [12] have argued that SQCD, in the free magnetic phase,

with small quark masses flows to a weakly coupled O’Raifeartaigh model, thus giving a

calculable model with dynamical supersymmetry breaking.

This can be seen from the classical magnetic superpotential eq. (2.5), which breaks

supersymmetry by the rank condition, giving nonzero F-terms

∂Wmag

∂Φij
= −hµ̂2

ij + hqiq̃j . (2.7)

Parametrizing the fields as

Φ =

(
YÑc×Ñc

ZT
Ñc×Nc

Z̃Nc×Ñc
XNc×Nc

)
(2.8)

qT =

(
χÑc×Ñc

ρNc×Ñc

)
, q̃ =

(
χ̃Ñc×Ñc

ρ̃Nc×Ñc

)
, (2.9)

(where Ñc = Nf − Nc is the rank of the magnetic gauge group) X is flat at tree level

(“pseudo-modulus”), while

〈χχ̃〉 = µ2
1IÑc×Ñc

, V0 = (Nf − Ñc)(hµ
2
2)

2 . (2.10)

The minimum corresponds to aligning the nonzero expectation value in the direction µ2
1

of the largest linear term, while the supersymmetry breaking scale is set by the smaller

µ2
2 < µ2

1.

The expectation value for χχ̃ completely breaks the magnetic gauge group, leaving

SU(Ñc)G × SU(Ñc) × SU(Nc) × U(1)V → SU(Ñc)D × SU(Nc) × U(1)′ . (2.11)

The fields from (Y, χ) are supersymmetric at tree level and will not be important in what

follows. On the other hand, the (ρ, Z,X) sector gives Nc decoupled O’Raifeartaigh mod-

els [12]. In particular, the (ρ, Z) fields couple to the tree level F-terms and have supersym-

metric masses of order hµ1 and nonsupersymmetric splittings of order hµ2. Once gSM 6= 0

in (2.4), they play the role of composite messengers, generated dynamically by the theory.

As will be reviewed in section 3, the flat directions are stabilized at 〈X〉 = 0 once one

loop effects from ρ and Z are taken into account. Nonperturbative effects, which have been

neglected here, create supersymmetric vacua. As long as µi ≪ |Λ|, the metastable vacuum

is parametrically long lived. Notice that the U(1)R symmetry is unbroken; in section 3.2

the superpotential will be deformed and the R-symmetry will be broken explicitly and

spontaneously [22].

2.3 A hybrid Higgs sector

In order to generate the small ratio MZ/MP l dynamically, we postulate that some of the

Higgs fields arise as composites of the SQCD theory introduced before. We take Hu to

be an elementary field, while Hd is generated from the meson QQ̃. In the weakly coupled

– 8 –
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magnetic description the dynamical breaking of SU(2)×U(1) will be fully calculable, arising

as a tree level plus one loop effect.

After weakly gauging the SM gauge group, the mesons QQ̃ contain 5 + 5 representa-

tions, which have the correct quantum numbers for a Higgs field. The global symmetry is

broken to (2.11) and SU(5)SM is embedded into the unbroken subgroup SU(Nc) [22]. This

means that Hd is identified with a 5 component from X,

Hd ≡ X
5
. (2.12)

It is important that this element comes from an off-diagonal component of the meson that

does not have a tree level F-term.

Anomaly cancellation requires adding an elementary “spectator” S
5

with the quantum

numbers of Hd. Notice that X also contains conjugate representations that could couple to

Hd once more general electric perturbations are turned on (see section 3). This is avoided

by coupling such extra unwanted matter to the spectator,

∆Wel = λS
5
(QQ̃)5 , (2.13)

as in [3]. In the magnetic theory, this gives masses λΛ to the unwanted representations.

Such deformations can affect supersymmetry breaking in important and interesting ways,

as we now discuss (see e.g. [27, 28] for recent analysis).

Below the high energy scale λΛ, S
5

and the meson component (QQ̃)5 can be integrated

out. In the undeformed theory the F-term (2.7) for (QQ̃)5 required ρ
5
ρ̃1 = 0. However,

due to the deformation (2.13), this field is no longer part of the low energy spectrum and

we have no such constraint.6 Let us analyze the modified F-term conditions. Besides the

vacuum configuration presented in section 2.2, there are now new ways of cancelling the

linear F-terms by turning on ρ
5

and ρ̃1. Taking into account the rank condition, consider

χχ̃ = µ2
11Ñc−1 , ρ1ρ̃1 = ρ

5
ρ̃5 = µ2

2 . (2.14)

Writing

|ρ1| = η µ2 , |ρ̃1| = η−1µ2 , |ρ
5
| = ξ−1 µ2 , |ρ̃5| = ξµ2 , (2.15)

the F-term potential now becomes

VF = (hµ2
1)

2 + (Nf − Ñc − 2)(hµ2
2)

2 + η2ξ2(hµ2
2)

2 . (2.16)

Here, two F-terms from X have been cancelled by turning on the ρi, at the price of a

new uncancelled F-term in the Y direction. The last term in the potential comes from the

off-diagonal WΦ5
= hρ1ρ̃5.7

First consider the global limit, where SU(5)SM × U(1)V are not gauged. Then the

potential (2.16) has a runaway η → 0 and ξ → 0. Of course, once some of the expectation

6Equivalently, if the heavy fields are not integrated out, it is possible to turn on ρ
5
ρ̃1 along an F-flat

direction if ΛS
5

= ρ
5
ρ̃1.

7We thank N. Craig for useful discussions on these points.
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values become comparable to the dynamical scale, the above analysis breaks down and mi-

croscopic effects need to be included. If we ignore these corrections, the runaway direction

has an F-term energy

Vrunaway = (hµ2
1)

2 + (Nf − Ñc − 2)(hµ2
2)

2 . (2.17)

The ISS metastable vacuum has lower energy as long as

µ2
2 ≤ 1√

2
µ2

1 . (2.18)

Thus, already order one differences in the quark masses stabilize the hybrid Higgs vacuum

against decays towards the new runaway created by the deformation (2.13).

Having understood the global limit, let us take into account the effects of weakly

gauging SU(5)SM × U(1)V . This gives a D-term potential

VD =
1

2
µ4

2

(
g2
SM

(
ξ2 − 1

ξ2

)2

+ g2
V

(
ξ2 − 1

ξ2
+ η2 − 1

η2

)2)
. (2.19)

Combining (2.16) and (2.19), ξ and η are stabilized away from the origin. For realistic

values of the couplings g2 ∼ O(1), the minima are at (ξ, η) . O(1). The condition (2.18)

is then relaxed, such that even percent-level differences between µ2
1 and µ2

2 suffice to make

the vacuum energy of the new configuration larger than the ISS value.

It should be noted that, while different masses µ2
i make the hybrid Higgs construction

fully stable against decay towards the above new vacua, in applications to single-sector

models as in section 4 it will be useful to consider degenerate masses in order to obtain

realistic spectra. In this case, the decay channel to (2.14) is allowed, and one has to

ensure that the ISS vacuum is long-lived enough. As will be explained in section 4.4,

in these single-sector models there are new vacua close to the origin in field-space, in

which vector spectators acquire VEVs, and which have lower energy than those involving

chiral spectators. The decay rate of the ISS vacuum is expected to be dominated by the

tunneling towards the lower lying minima, and an explicit calculation of the bounce action

corresponding to the semiclassical tunneling configurations shows that as long as h . O(1),

the metastable vacuum is numerically (though not parametrically) long-lived. We will come

back to this point in section 4.4.

In summary, we will choose µ2
1 & µ2

2 so that the state (2.14) is energetically disfavored;

in this case we may safely turn on the deformation (2.13) and work in the metastable

vacuum described in section 2.2. Denoting

X = X ′ ⊕Hd ⊕X5 (2.20)

(where X ′ has an even number of 5+5), the low energy theory will contain only X ′ and Hd.

The interactions between Hd and the supersymmetry breaking sector are fully determined

by Seiberg duality, and follow from the superpotential (2.5).

The final step in defining the Higgs sector is to specify the interactions between the

elementary Hu and the SQCD fields. We postulate that at some high scale MH > Λ there
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is new physics that generates the irrelevant interaction

WH ∼ 1

M2
H

(QQ̃)Hu(QQ̃) . (2.21)

In fact, we will see in section 4 that these interactions are also required for producing the SM

flavor structure once some of the SM fermions are generated through compositeness. Then

MH will be identified with the “flavor scale” Mflavor, at which the SM Yukawa couplings

are produced.

In the low energy theory, (2.21) gives cubic terms of the form Wmag ∼ XHuX+ZHuZ̃.

The trilinear couplings involving the traceless part of X (which are responsible for the SM

Yukawas of composite generations) will be analyzed in section 4. Their effect on EW

physics starts at two loops. In contrast, in order to preserve the supersymmetry breaking

structure of section 2.2, no extra couplings to the singlet trX should be generated. This

can be enforced at the scale MH by an approximate discrete symmetry under which trX is

odd while the rest of the SM fields are even. We focus then on the terms ZHuZ̃ that couple

Hu to the composite messengers. The contribution to the magnetic superpotential is

Wmag ⊃ λutr(ZHuZ̃) , λu ∼ O
(

Λ2

M2
H

)
. (2.22)

Since MH > Λ, this naturally gives λu ≪ 1.

To summarize, the magnetic description of the supersymmetry breaking plus Higgs

sectors becomes

Wmag =
[
−hµ2

2 trX ′+h tr(ρX ′ρ̃)+hµ1tr(ρZ̃+ρ̃Z)
]
+λdtr(ρHdρ̃)+λutr(ZHuZ̃) . (2.23)

For clarity, the supersymmetry breaking fields have been grouped inside the square brack-

ets. We have already expanded in the fluctuations (2.8), (2.9), and dropped inconsequen-

tial contributions from the supersymmetric fields (Y, χ). Recall that X ′ was defined in

eq. (2.20); when there is no confusion we will drop the primes in this field.

The Hd interaction is generated by htr(qΦq̃) in (2.5), and λd = h. On the other

hand, the interaction ZHuZ̃ with the elementary Higgs follows from the dimension 5 op-

erator (2.21) added to the electric theory. Therefore

λu ≪ λd (2.24)

and there is a parametrically strong mixing between the composite Higgs Hd and the super-

symmetry breaking sector, while the elementary field couples through a highly suppressed

operator (and decouples in the limit MH/Λ → ∞).

The R-symmetry assignments given at the end of section 2.1, together with the super-

potential (2.23), imply that the Higgs fields have R-charges

R(Hu) = −2 , R(Hd) = 2 . (2.25)

This symmetry forbids a supersymmetric µ term W = µHuHd.
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3 Dynamical electroweak symmetry breaking

We are now ready to analyze the breaking of SU(2) × U(1) in the magnetic theory, and

establish its relation to supersymmetry breaking.

First, at tree level the theory with superpotential (2.23) exhibits supersymmetry break-

ing as in the ISS model described in section 2.2. This happens because we have not added

interactions involving the supersymmetry breaking fields corresponding to the diagonal

components of X. Both Hu and Hd are flat at the classical level.

To understand the dynamics of the low energy modes, one loop effects from the heavy

fields (ρ, Z) have to be taken into account. Keeping X, Hu and Hd as background fields

and integrating out the messengers produces a Coleman-Weinberg potential [19],

VCW =
1

64π2
StrM4

(
log

M2

(hµ1)2
− 3

2

)
. (3.1)

For computational purposes, it is simpler to evaluate the potential at the messenger scale

hµ1. However, the dependence on the scale cancels out, and the one loop potential actually

gives finite effects independent of hµ1.

The fermion mass matrix can be read off from (2.23),

Wmag ⊃ tr
(
ρ Z

)(hX + λdHd hµ1

hµ1 λuHu

)(
ρ̃

Z̃

)
, Mf =

(
hX + λdHd hµ1

hµ1 λuHu

)
. (3.2)

The bosonic mass matrix includes off-diagonal F-terms F ∗
X = hµ2

2 as well. Details of the

calculation (3.1) can be found in appendix A.

3.1 One-loop effects and electroweak symmetry breaking

Expanding the CW potential to quadratic order in the fluctuations (X,Hu,Hd),

VCW = m2
X |X|2 +m2

Hu
|Hu|2 +m2

Hd
|Hd|2 −Bµ(HuHd + c.c.) + . . . (3.3)

gives

m2
X =

h2Ñc

8π2
(log 4 − 1)

h2µ4
2

µ2
1

,

m2
Hd

=
λ2
dÑc

8π2
(log 4 − 1)

h2µ4
2

µ2
1

,

m2
Hu

= −λ
2
uÑc

8π2
(1 − log 2)

h2µ4
2

µ2
1

,

Bµ =
λuλdÑc

8π2
(1 − log 2)

h2µ4
2

µ2
1

. (3.4)

The mass contribution m2
X was found in [12] and stabilizes the pseudo-modulus X at the

origin. The squared Higgs masses are generated one loop factor below the supersymmetry

breaking scale, and are suppressed by the cubic couplings λu and λd. This gives a hierarchy

m2
Hu

≪ Bµ ≪ m2
Hd
.
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Here we are neglecting two loop gauge mediated effects, that will be included in the full

model of section 5. Note that for real values of the high energy parameters, no phases

appear in the soft masses given above.

Importantly, integrating out the heavy messengers produces a tachyonic mass for Hu,

m2
Hu

< 0, so that electroweak symmetry is spontaneously broken. The up-type Higgs

couples to the meson messengers (Z, Z̃), as opposed to the pseudo-modulus X that is

stabilized at the origin through its coupling to (ρ, ρ̃). The destabilization of the origin

H = 0 is a nonperturbative phenomenon from the point of view of the original electric

theory, and appears in the magnetic description as a one loop effect produced by the

composite messengers. We conclude that the effective model (2.23) that appears as the long

distance description of our SQCD theory has the right structure to break the electroweak

symmetry (and supersymmetry) dynamically.

This provides an alternative mechanism to radiative EWSB [31–33], where m2
Hu

be-

comes negative due to the RG evolution driven by the top quark Yukawa coupling. Radia-

tive EWSB is particularly important at small tan β and when supersymmetry is broken at

a high scale. Our mechanism could become useful outside those regimes. In fact, in the

realistic models presented below, we will break SU(2)×U(1) by a combination of dynamical

and radiative effects.

The position of the EWSB vacuum is obtained by minimizing (3.3) plus the quartic

potential coming from the SM gauge coupling D-terms,

VD =
g2

2
|H+

u H
0∗
d +H0

uH
−∗
d |2 +

1

8
(g2 + g′2)

(
|H0

u|2 − |H0
d |2 + |H+

u |2 − |H−
d |2
)2
. (3.5)

The CW potential (3.1) also generates quartic Higgs couplings of order λ4
u,d/(32π

2), whose

effect is negligible compared to the D-term contribution.

Given the (real valued) soft parameters of eq. (3.4), there are vacuum solutions with

〈H−
d 〉 = 〈H+

u 〉 = 0 and with real values for 〈H0
u〉 and 〈H0

d 〉. First, extremizing with respect

to Hd gives

tan β ≈
m2
Hd

Bµ
∼ λd
λu

. (3.6)

Then the Hu extremum gives, in terms of v2 = H2
u +H2

d ,

1

4
(g2 + g′2)v2 =

m2
Hd

− tan2 βm2
Hu

tan2 β − 1
. (3.7)

Using (3.4), all the terms in this equation are of the same order, and give

1

4
(g2 + g′2)v2 ≈ λ2

u

16π2

h2Ñcµ
4
2

µ2
1

. (3.8)

The dynamically generated electroweak scale is then one loop below the supersymmetry

breaking scale and is controlled by the coupling of Hu to the messenger sector.

The model then gives a decoupling limit of the MSSM, having large tan β and |mHd
| ≫

|mHu |. Notice that all the terms contributing to (3.7) are naturally of the same order. For

example, a supersymmetry breaking scale

hµi ∼ O(100TeV)

– 13 –



J
H
E
P
0
3
(
2
0
1
1
)
1
1
3

and λu ∼ O(0.01) give a Fermi scale of the correct magnitude. It is necessary to point out

that in the concrete model presented below we will need larger values λu ∼ 0.1 in order

to get a realistic spectrum. Stop effects will also become important, and some amount of

tuning will be required.

3.2 R-symmetry, µ term and gaugino masses

The calculations of appendix A reveal that there is no one loop µ term from integrating out

the messengers; similarly, no Majorana masses for gauginos are generated. The reason is

that in the limit gSM → 0 the supersymmetry breaking vacuum preserves the R-symmetry

defined before. For gSM 6= 0 the Higgs VEVs spontaneously break this symmetry, but

such breaking generates negligibly small higgsino and gaugino masses. An extra source of

R-symmetry breaking is hence needed.

This is remedied as follows [22]. The electric theory is perturbed by a quartic operator

produced at some high scale Λ0,

∆Wel =
λ

2Λ0
(QQ̃)2 , Λ0 ≫ Λ . (3.9)

At long distance this becomes a relevant mass term with a naturally small coefficient,

∆Wmag =
1

2
h2µφ tr Φ2 , µφ ≡ Λ2

Λ0
λ . (3.10)

This term breaks U(1)R explicitly because R(Φ) = 2. We refer the reader to [29] for an

analysis of general polynomial deformations of this theory.

The deformation by Φ2 creates supersymmetric vacua at a distance Φ ∼ µ̂2/µφ. How-

ever, in the limit µφ ≪ |µ̂|, the metastable vacuum found before still exists, albeit shifted

away from the origin [22],

〈hX〉 ∼ 16π2 µφ
µ2

1

Ñcµ
2
2

. (3.11)

The expectation value of X is larger than µφ by an inverse loop factor because the vacuum

arises by balancing the tree level tadpole µ2
2µφX against the one loop contribution m2

X |X|2.
In the limit µφ/µi ≪ 1 the supersymmetry breaking vacuum can be made parametrically

long-lived.

The fact that the spontaneous breaking of the R-symmetry (〈hX〉) dominates over

the explicit breaking (µφ) implies that large enough gaugino and higgsino masses can be

generated even if µφ/µi is small. Gaugino mass unification occurs as a consequence of the

global symmetry respected by the messengers. For instance, [22] found that for small X/µi,

gaugino masses are

mλa
∼ g2

aÑc

16π2
〈hX〉

(
F

M2

)3

∼ g2
aµφ

µ4
2

µ4
1

, (3.12)

where F = h2µ2
2, M

2 = h2µ2
1. TeV scale gaugino masses can be obtained for µφ ∼ TeV.

Importantly for our purposes, in the presence of (3.10) a nonzero one loop µ term is

produced by the heavy messengers (see appendix A.3),

µ ∼ λuλdÑc

16π2
〈hX〉

(
F

M2

)3

∼ λuλdµφ
µ4

2

µ4
1

. (3.13)

– 14 –



J
H
E
P
0
3
(
2
0
1
1
)
1
1
3

Our proposal naturally leads to a small higgsino mass, proportional to λu. For instance,

for µφ in the TeV range, Ñc = 1, λu ∼ 0.01 and λd ∼ 2π, we obtain µ1 ∼ µ2 ∼ 100GeV.8

Finally, 〈hX〉 6= 0 also corrects the soft parameters computed in eq. (3.4), in a way which

will be discussed in the following sections.

3.3 Comments on the µ/Bµ problem

In gauge mediation, the µ/Bµ problem appears because parameters with different mass

dimension are generated at the same loop level. Typically, loop effects from the hidden

sector produce µ2 ≪ Bµ. EWSB is then either impossible (if mHu ∼ mHd
∼ µ), or

extremely fine-tuned (if µ is at the weak scale and m2
Hu

∼ m2
Hd

∼ Bµ). In general, this is

addressed using new mechanisms that ensure

m2
soft ∼ µ2 ∼ Bµ ∼ m2

Hu,d
.

See e.g. [15, 30] and references therein.

On the other hand, the composite Higgs model produces soft parameters (3.4)

and (3.13) with

m2
Hu

≪ Bµ ≪ m2
Hd
.

This gives a viable electroweak scale, with all the terms in eq. (3.7) being of the same

order of magnitude. Therefore, the hierarchy µ2 ≪ Bµ is no longer problematic, and in

fact it leads to an attractive phenomenology that we analyze below. From the low energy

theory this follows from the strong mixing between Hd and the “hidden” sector. In fact,

the microscopic theory shows that Hd is part of the supersymmetry breaking sector, and

Seiberg duality provides a weakly coupled dual where such dynamics can be understood.

Finally, it is necessary to point out that the simple mechanism presented so far receives

corrections from interactions with the rest of the MSSM fields, especially with the top and

stop. Such effects are analyzed in sections 4–6. Constructing a realistic single sector model

places certain constraints on the parameters of the Higgs sector, which lead to some amount

of fine-tuning (as discussed in appendix C).

4 Building a composite supersymmetric SM

After having specified the supersymmetry breaking and Higgs sector, we next consider the

SM generations and focus on the question of how the Yukawa textures arise. Our goal

in this second part of the work is to present fully realistic models and analyze the RG

evolution from the messenger scale down to the top mass scale.

We advocate the idea that the dynamics responsible for breaking SU(2)×U(1) should

also generate the flavor hierarchies. This will be accomplished by combining the previous

mechanism of EWSB with the single sector model of [4]. We should point out that the idea

of SM fermions composed of preons that also break the weak symmetry has been explored

over the years using different tools; see [34] and references therein.

8In the realistic proposals in sections 5 and 6, we will focus on values λd ∼ 1 and λu ∼ 0.1.
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In our proposal, generating realistic flavor textures requires adding a field that trans-

forms in the adjoint representation of the gauge group. We start by discussing this new

theory and its long distance description. Then in section 4.3 we review how this theory

gives rise to realistic Yukawa couplings via compositeness, and we go on to show that the

mechanism for dynamical EWSB can also be applied in this context, with certain modifi-

cations that we shall analyze. Finally, section 4.5 summarizes the main properties of the

model and its soft parameters.

4.1 The microscopic theory and its magnetic dual

The electric theory is SU(Nc) SQCD with Nf flavors (Q, Q̃) and a field U in the adjoint rep-

resentation of the gauge group; this has been studied in [35–37]. A general renormalizable

superpotential for U is introduced,

Wel =
gU
3

TrU3 +
mU

2
TrU2 . (4.1)

Here ‘Tr’ means a trace over the gauge indices, while ‘tr’ will be reserved, as before, for

traces over flavor indices.

The cubic superpotential restricts the chiral ring mesons to

M1 ≡ (QQ̃) , M2 ≡ (QUQ̃) (4.2)

which will be identified with the first two SM composite generations. We will shortly

perturb the superpotential using the operators QQ̃ and QUQ̃ to produce supersymmetry

breaking vacua.

Below the dynamical scale Λ, the theory admits a magnetic description in terms of

an SU(Ñc ≡ 2Nf −Nc) gauge group, with Nf fundamental quarks (q, q̃), singlets M1 and

M2, and an adjoint Ũ of the magnetic gauge group. The superpotential includes a cubic

polynomial in Ũ plus cubic and quartic interactions between the magnetic quarks, the

singlet fields and Ũ .

This theory is IR free and stable in the range

Nc

2
< Nf <

2

3
Nc .

The magnetic theory simplifies for

2Nf −Nc = 1 , (4.3)

since there is no magnetic gauge group. For simplicity, unless the formulae include explicit

factors of Ñc, in what follows we restrict to the case Ñc = 1, although our construction

can be applied to the full free magnetic range. The magnetic quarks correspond then to

the dressed baryons

q =
[Q]Nf [UQ]Nf−1

Λ3Nf−2
, q̃ =

[Q̃]Nf [UQ̃]Nf−1

Λ3Nf−2
. (4.4)

It is also convenient to redefine the singlet mesons to have dimension one,

Φ1 =
(QQ̃)

Λ
, Φ2 =

(QUQ̃)

Λ2
. (4.5)
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In terms of these fields, the classical magnetic superpotential is

Wmag = h tr q

(
−1

2
(Nc − 1)

mU

gUΛ
Φ1 + Φ2

)
q̃ (4.6)

(plus a nonperturbative contribution which is negligible for our analysis). The appearance

of the ratio mU/Λ multiplying Φ1 can be understood in terms of a non-anomalous R-

symmetry (R(U) = 2/3) that is restored in the limit mU/Λ → 0. The long distance

theory consists then of magnetic quarks (q, q̃) coupled to the linear combination of mesons

appearing in (4.6), plus a free meson corresponding to the orthogonal combination.

4.2 Supersymmetry breaking

The next step is to introduce appropriate deformations to generate supersymmetry breaking

vacua. Notice that the IR theory reduces to the one discussed in section 2.1 after identifying

Φ ≡ −1

2
(Nc − 1)

mU

gUΛ
Φ1 + Φ2 . (4.7)

Supersymmetry and R-symmetry breaking will ensue once linear and quadratic deforma-

tions in Φ are added to the magnetic superpotential.

There are, however, two important differences with the theory of section 2:

1. There is an extra meson which we denote by Φ̃ (the orthogonal combination to (4.7))

that is decoupled from the supersymmetry breaking sector at the classical level. Once

supersymmetry is broken, this direction could become tachyonic. We have to make

sure that the magnetic deformations induce a large enough mass.

2. The UV theory is different. In particular, the mesons and baryons have different UV

dimensions than the ones in section 2. This is important for our purposes because

the flavor hierarchies will be generated at a scale Mflavor > Λ. While supersymmetry

breaking is an IR effect, driven by the combination Φ, for the purpose of computing

the SM Yukawa couplings we have to keep track of mesons with different dimensions.

In order to analyze the supersymmetry breaking vacuum, here we work in terms of the fields

Φ and Φ̃, but starting from the next subsection we reintroduce Φ1 and Φ2 in connection

to the SM Yukawa matrices.

Let us deform the electric theory by a polynomial in the mesons,

∆Wel = m(QQ̃) + λ1(QUQ̃) +
λ2

2Λ0
(QQ̃)2 + . . . (4.8)

We require that m ≪ Λ and λ1 ≪ 1, and the quartic coupling is generated at a scale

Λ0 ≫ Λ. The magnetic superpotential becomes

Wmag =

[
−h tr(µ̂2Φ)+htr(qΦq̃)+

1

2
h2tr(µφΦ

2)

]
−h tr(µ̃2Φ̃)+

1

2
h2 tr(µ̃φΦ̃

2) + . . . (4.9)

The largest of m/Λ and λ1 gives the leading contribution to the linear terms in the IR

theory; here the relation between electric and magnetic parameters is analogous to (2.6).
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Different electric quark masses or cubic couplings imply that µ̂2 is an Nf × Nf ma-

trix. For our purposes it will be enough to consider the matrix structure given in (2.6).

Similarly, the mass terms follow from the quartic and higher order deformations in (4.8).

For simplicity, µφ will be taken to be proportional to the identity matrix. The couplings

with and without tildes are of the same order of magnitude — they differ by order one

numerical factors that enter into the definition of (Φ, Φ̃) in terms of (Φ1,Φ2). Also, mixed

terms ΦΦ̃ are not included because their effect can be absorbed into a redefinition of µφ
and µ̂ after stabilizing Φ̃ (see below).

The terms grouped inside the square brackets give the model discussed in the first part

of the work. There is a supersymmetry breaking direction X corresponding to the lower

sub-block of Φ (see eq. (2.8)), as well as composite messengers (ρ, Z). As in section 3.2,

R-symmetry is broken both explicitly and spontaneously, with the latter dominating. For

what follows, it is important to keep in mind that X and Z arise now from a combination

of dimension 2 and dimension 3 fields in the UV theory. The Coleman-Weinberg potential

for the fields with definite UV dimension reads

VCW = m2
CW

∣∣∣∣−
1

2
(Nc − 1)

mU

gUΛ
Φ1 + Φ2

∣∣∣∣
2

+ . . . , (4.10)

where the one loop mass m2
CW = m2

X was defined in eq. (3.3).

On the other hand, since the meson Φ̃ is not coupled to (q, q̃), the rest of the terms

imply that Φ̃ is stabilized supersymmetrically at 〈hΦ̃〉 = µ̃2/µ̃φ. We conclude that the

same deformations that break supersymmetry also stabilize Φ̃ and resolve the issue of

potential tachyons from microscopic corrections. This then gives a consistent model of

supersymmetry and R-symmetry breaking in SQCD with fundamentals and an adjoint.9

4.3 Flavor textures and composite Higgs

Finally, we add in the Higgs sector of section 2 and combine with the composite MSSM

of [4]. The matter content of the model is the following:

• The supersymmetry breaking sector is composite and arises from the diagonal com-

ponents of (4.7) plus magnetic quarks.

• Hu, the third generation (Ψ3), and gauge supermultiplets are elementary.

• Hd and the second generation arise as dimension 2 composites from QQ̃.

• The first generation is generated from the dimension 3 meson QUQ̃.

4.3.1 Embedding of the SM gauge group

Let us be more concrete regarding the embedding of the SM gauge group into the global

symmetry group. A simple choice for the number of flavors and colors of the electric theory

corresponds to [4]

Nf = 12 , Ñc = 1 ⇒ Nc = 23 .

9We refer the reader to [38, 39] for a different construction of metastable vacua in SQCD with an adjoint.
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Recalling that the SU(Nf ) global symmetry is broken to SU(Nf − Ñc), the embedding of

GSM is given by

Q ∼ (5 + 5̄ + 1) + 1 , Q̃ ∼ (5̄ + 5 + 1) + 1 . (4.11)

Actually, a realistic theory of flavor with inverted hierarchies requires larger Nf and Nc;

we refer the reader to [4] for details.

Decomposing the mesons as in eq. (2.8),

Φi =

(
Yi, 1×1 ZTi, 1×11

Z̃i, 11×1 Xi, 11×11

)
, i = 1, 2 , (4.12)

the SM quantum numbers of the X fields are

Xi ∼ (10 + 5̄) + 5̄ +
[
2 × 24 + 15 + 15 + 10 + 2 × 5 + 3 × 1

]
. (4.13)

Each of the mesons X1 and X2 yields one composite SM generation 10+ 5̄, while Hd comes

from the extra 5̄ in X1.

Except for the singlets, the representations R inside the square brackets give rise to

extra matter that has to be removed from the low energy spectrum. This is done by

introducing spectator fields S
R̄

with couplings to the unwanted matter

Wel ⊃ λ1R

∑

R

S1R̄(QQ̃)R + λ2R
1

Λ0

∑

R

S2R̄(QUQ̃)R . (4.14)

In the IR this gives masses of order Λ and Λ2/Λ0 to the unwanted matter. The same

procedure is used to lift the linear combination of (Zi, Z̃i) that does not couple to the

supersymmetry breaking field (4.7).

Importantly, after turning on the chiral deformation (4.14), the composite SM fermions

only acquire masses from the Yukawa couplings. The µφ perturbations produce a negligible

admixture with spectators.

4.3.2 Yukawa couplings

We assume that at some high scale Mflavor > Λ there is new physics responsible for gener-

ating couplings between the Higgs and the gauge invariant mesons [3, 4],

Wyu ∼ 1

M4
flavor

(QUQ̃)Hu(QUQ̃) +
1

M3
flavor

(QQ̃)Hu(QUQ̃) +
1

M2
flavor

(QQ̃)Hu(QQ̃) +

+
1

Mflavor
(QQ̃)HuΨ3 +

1

M2
flavor

(QŨQ)HuΨ3 + Ψ3HuΨ3 . (4.15)

Notice that only couplings to the SM fields are generated, because the extra matter in the

mesons is lifted using (4.14).

After the theory confines, these irrelevant interactions become Yukawa couplings in

terms of the elementary mesons,

Wyu ∼ Λ4

M4
flavor

Φ2HuΦ2 +
Λ3

M3
flavor

Φ1HuΦ2 +
Λ2

M2
flavor

Φ1HuΦ1 +

+
Λ

Mflavor
Φ1HuΨ3 +

Λ2

M2
flavor

Φ2HuΨ3 + Ψ3HuΨ3 . (4.16)
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In terms of

ǫ ≡ Λ

Mflavor
(4.17)

the up-type fermion Yukawa matrix becomes

yU ∼



ǫ4 ǫ3 ǫ2

ǫ3 ǫ2 ǫ

ǫ2 ǫ 1


 (4.18)

(up to order one numbers). The correct flavor texture is generated for ǫ ∼ 10−1 − 10−2, so

that the “flavor” scale is approximately one decade above the compositeness scale Λ.

On the other hand, the down- and lepton- type Yukawa couplings are generated from

couplings to the composite Higgs Hd ⊂ (QQ̃)/Λ. For simplicity, it is assumed that such

couplings are also generated at the scale Mflavor:
10

Wyd,yl
∼ 1

M5
flavor

(QUQ̃)(QQ̃)(QUQ̃) +
1

M3
flavor

(QQ̃)3 +
1

Mflavor
Ψ3(QQ̃)Ψ3 + . . .

→ ǫ5Φ2HdΦ2 + ǫ3Φ1HdΦ1 + ǫΨ3HdΨ3 + . . . (4.19)

This gives

yd ∼ yl ∼ ǫ yu . (4.20)

In our proposal, this result explains dynamically the smallness of the bottom and tau

mass compared to the top mass. However, the hierarchy of second generation masses is

smaller, and in the first generation md is actually a bit heavier than mu. Eq. (4.20) at

large tan β would produce too light fermion masses in the first two generations, unless

additional structure is present in the Yukawa matrices. The realistic models we discuss

below have tan β ∼ 6− 10 and then this is not a serious issue because factors of 5 or so in

the Yukawa matrices are enough to produce realistic fermion masses. On the other hand,

for parametrically large tan β, another mechanism for generating the down type masses of

the first two generations would be needed. See discussion below (4.35).

4.4 New vacua and lifetime

The example (4.13) considered here requires spectators in vector-like representations, with

superpotential interaction (4.14). This leads to new metastable vacua near the origin, where

the spectators and ρ fields acquire nonzero expectation values.11 The vacuum energy of

the metastable configurations depends on the eigenvalues of µ̂2.

For a spectator in a vector-like representation coupling to a diagonal block of the

mesons of dimension n, the new metastable configuration has [10]

〈χTχ〉 = µ2
1 1Ñc−1 , 〈ρTρ〉 = µ2

2 diag(0, . . . , 0, n)

〈S〉 =
µ2

2

λΛ
diag(1, . . . , 1,−(n − 1)) , (4.21)

10For instance, in models that unify one has Λ ∼ MGUT [4], and then it’s natural to assume that all the

irrelevant interactions are produced near the Planck scale.
11These vacua were first found by D. Green, A. Katz and Z. Komargodski.
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after an appropriate flavor rotation. The vacuum energy reads

V0 = h2µ4
1 + 2(Nf − Ñc − n)h2µ4

2 . (4.22)

The energy of the new vacua is higher than the ISS one for

µ2
2 ≤ 1

n1/2
µ2

1 . (4.23)

In this case our metastable solution would be stable against decay towards (4.21).

However, for the matter content (4.13) this would require µi’s differing by an order

of magnitude. Such a choice would in turn lead to a strong suppression in the fermion

masses (3.12), (3.13) and a split spectrum. In order to avoid this, in what follows we

restrict to µ2
1 = µ2

2 ≡ µ̂2. Then we have to make sure that the decay rate to the new

vacua (4.21) is small enough.

We have checked this by performing an explicit numerical evaluation of the action of

the multi-field semiclassical tunneling configuration, or “bounce” [58], associated with the

decay to a vacuum involving nonzero VEVs for a spectator S25, corresponding to n = 5 in

eq. (4.21). To compute the bounce, we have assumed that it only involves nonzero profiles

for the real part of the fields ρ, ρ̃, χ, χ̃, S, as well as (taking for simplicity Ñc = 1, though the

results apply equally to Ñc > 1), ρ = ρ̃ ≡ (0, 0, 0, 0, r), χ = χ̃ ≡ x, S ≡ diag(s, s, s, s,−4s) .

In the µφ = 0 case, this can be justified from the equations for the bounce and the boundary

conditions; when considering µφ 6= 0, one should also consider tunneling along the X, Y

field directions, which should yield smaller decay rates. The bounce configuration that we

considered involves thus three fields, x, r, s; in order to obtain it numerically we have used

the technique of ref. [59], taking as potential the tree-level one plus one-loop contributions

from the gauge fields, which we modelled as

Vg ∼
g2

16π2
|ρ+ ρ̃∗|2|χ+ χ̃∗|2 . (4.24)

The above choice is motivated as follows: around each vacua with either 〈χ〉 or 〈ρ〉 nonzero,

it generates mass-terms for either the ρ or χ fields -which in particular stabilize the ρ+ ρ∗

pseudo-Goldstone direction in the ISS vacuum, ensuring that there actually is a potential

barrier- but the energies of the vacua are not affected, as required by the fact that on each

of the minima the SUSY vector multiplets decouple from the SUSY breaking, at least to

lowest order.

Ignoring µφ, it can be easily seen that the action of the bounce only depends on the

dimensionless parameters h and κΛ ≡ Λ/µ̂. The dependence on κΛ turns out to be very

weak, which is a consequence of the small VEV of the field s in the new vacuum, which is

suppressed by Λ/µ̂, see eq. (4.21). Hence the lifetime of the ISS vacuum depends mainly

on h. We have seen that the bounce action Sb goes like inverse power laws of h, so that the

lifetime Γ ∼ expSb increases very rapidly for decreasing h. This can be understood as a

consequence of the fact that h controls the energy difference between the two vacua. The

explicit computations show that a bounce action Sb & 400, which is enough to guarantee a

lifetime greater than the age of the Universe, is attainable for h . 0.75 (see figure 2). For

more details about the computation, we refer the reader to a future note [60].
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Figure 2. Bounce action as a function of h, for κΛ = 385.

4.5 Summary of the model

We end this section by summarizing the model and its interactions, together with the

effects of integrating out the composite messengers.

First, the scales of the model are the following. The dynamical scale is Λ, below which

we switch to the weakly coupled magnetic description; in examples with unification this is

Λ ∼ MGUT but otherwise it can be smaller. There are two scales above Λ; first, Mflavor

is the scale at which the interactions between the Higgs and the other SQCD mesons are

generated. And Λ0, introduced in (4.8), controls the irrelevant polynomial deformations

in the mesons — these are responsible, in particular, for breaking the R-symmetry. These

two scales are taken to be roughly of the same order of magnitude, and are one or two

orders of magnitude above Λ. The other dimensionful parameter of the model is the electric

quark mass m; it sets the scale of supersymmetry breaking µ̂2 ∼ mΛ, and m/Λ ≪ 1 is

required for metastability. Actually, this mass parameter is not strictly required because

supersymmetry breaking can also be obtained from the marginal deformation ∆Wel ∼ QUQ̃

in (4.8).

The IR interactions are given by

Wmag = WO′R + λutr(ZHuZ̃) + tr ρ
(
λdHd + h1Φ

SM
1 + h2Φ

SM
2

)
ρ̃+WYuk . (4.25)

Let’s describe the different contributions to Wmag. The O’Raifeartaigh-type terms are,

from eq. (4.9),

WO′R = −hµ̂2 trX + htr(ρXρ̃) +
1

2
h2µφ trX2 + hµ̂tr(Zρ̃+ Z̃ρ) (4.26)

where X arises from the (Nf − Ñc)× (Nf − Ñc) sub-block in the linear combination (4.7);

(Z, Z̃) also originate from this combination, albeit from the 1 × (Nf − Ñc) block. The

fields (Y, χ, χ̃) have not been included; they have a supersymmetric spectrum and don’t

contribute at one loop. Also, recall that we have restricted to coincident linear terms.

Next we have the interaction between Hu and the Z messengers; it comes from a

dimension 5 operator in the UV so that λu ≪ 1. The couplings between the ρ messengers
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and the composite MSSM fields originate from (4.6). Hd and the first generation arise from

the dimension two meson, so they have the same coupling h1 = λd. The second generation

ΦSM
2 has a different coupling, denoted by h2. Both λd and h2 are of the order of h, while

λu is parametrically smaller; this is due to the fact that Hd and ΦSM
i are composites, while

Hu is elementary.

The effective theory at the supersymmetry breaking scale hµ̂ is obtained by integrating

out (ρ, Z). The dominant effects arise at one loop (CW potential) and two loops (gauge

mediated contributions),

Veff = Vtree +
1

64π2
StrM4

(
log

M2

(hµ̂)2
− 3

2

)
+ V 2-loop

GM . (4.27)

While we discuss these calculations in detail in appendix A, let us analyze qualitatively

the various soft terms that are produced. There are three types of effects:

a) CW contributions: they affect scalars that have tree level couplings to the messengers,

m2
CW ∼ h2Ñc

16π2
(hµ̂)2

(
1 + O

(〈X〉
µ̂

))
. (4.28)

The corrections proportional to 〈X〉/µ̂, coming from the breaking of R-symmetry, are

important for some of the soft parameters, and are taken into account in the explicit

analysis of section 6.

b) Elementary sfermion masses come predominantly from two loop gauge mediated ef-

fects,12

m2
GM ∼ Ñc

(
g2

16π2

)2

(hµ̂)2 . (4.29)

c) Gaugino and higgsino masses appear at one loop and are proportional to the R-

symmetry breaking parameter (for small X/µ̂)

mψ ∼ Ñc

16π2
〈hX〉 ∼ µφ . (4.30)

The soft parameters for the Higgs sector produced by the CW potential were given in

section 3.1. Gauge-mediated contributions to the Higgs potential (and the nonzero VEV

〈hX〉) have to be taken into account as well.

We see that integrating out the heavy messengers produces masses squared (4.28) for

the composite MSSM fields that are one loop below the supersymmetry breaking scale.

On the other hand, elementary fields get their masses predominantly from gauge mediated

effects (4.29), so they are two loops below the supersymmetry breaking scale. Finally, the

gauginos and higgsinos end up having masses proportional to µφ (recall that 〈hX〉 ∼ 8π2µφ
so that the loop factors cancel in the fermion masses). In practice, the higgsinos tend to

be quite light because their mass receives an extra suppression proportional to λuλd. This

12These two loop computations for the model of [26], which our work uses, have been analyzed by R. Essig

and J.F. Fortin [40]. We thank them for their help.
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spectrum is of the type considered for instance in [13], where the first two generation

sfermions (plus in our case Hd) are decoupled to the multi-TeV range, while around the

TeV scale one only has third generation matter, gauginos and a light Higgs.

Requiring the masses of gauginos and third generation sfermions to be at around 1TeV

sets, for Ñc = O(1),

hµ̂ ∼ 200TeV , µφ ∼ 1TeV ⇒ x . 1 , (4.31)

where the relation between µφ and X/µ̂ is given, to lowest order, in eq. (3.11). In this case,

the composite masses are of the order

mHd
∼ mQ̃i

∼ 10 − 20TeV . (4.32)

In order to get higgsinos around 100 − 200GeV, we take

λu ∼ 0.1 , λd ∼ h ∼ hi ∼ 1 . (4.33)

This is the parameter range of interest in what follows.13 Parameter ranges, spectra and

other phenomenological properties are discussed in sections 5 and 6.

Mixing between the Higgs fields and the supersymmetry breaking sector produces one

loop A-terms for the composite generations,

LA-terms = Ad Q̃Hd
˜̄d+Al L̃Hd˜̄e+A′

d Q̃H
†
u
˜̄d+A′

l L̃H
†
u
˜̄e . (4.34)

Nonzero Au terms would require messengers transforming in a 10 + 10 representation. To

lowest order in the R-symmetry breaking parameter, the A-terms are found to be

Ad =
λdÑch

2
i

8π2

(
41

15
− 4 log 2

) 〈X〉3
µ̂3

hµ̂+ . . .

A′
d =

λuÑch
2
i

8π2

(
129

20
− 9 log 2

) 〈X〉3
µ̂3

hµ̂+ . . . , (4.35)

The contribution to the third generation is negligible, as in usual gauge mediation. It is

possible to choose the SM embedding so that the A-terms are diagonal in generation space;

this again requires Nf and Nc larger than the minimal (4.11).

Due to the cubic power of X/µ̂ (and the λu factor in the case of A′
d), these A-terms

are parametrically smaller than the other CW soft terms. However, they may still give

interesting low energy effects, particularly the A′ term, which is rarely included. In par-

ticular, a one loop diagram involving a bino and an A′
d insertion generates a fermion mass

operator

Lf = −y′dQH∗
ud̄ .

13It is necessary to point out that the simple mechanism for EWSB discussed in section 3.1, where the

messengers generate a tachyonic mass for Hu, receives now important modifications. The reason is that

having large enough gaugino masses and µ term requires x ∼ 1 and around these values, the one loop

contribution to m2

Hu
(first term in eq. (5.4)) transitions from negative to positive. This has to be added to

a positive two loop mass, so that the total mass for Hu is positive in the regime of interest. As explained

below, the breaking of SU(2)×U(1) will be produced by a combination of dynamical and radiative effects.
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This mechanism for generating quark masses radiatively could become useful in regions of

very large tan β. For a recent work on other loop induced fermion masses and references

see [41].

Let us end our analysis of the single sector model with a brief discussion of flavor

changing neutral currents (FCNCs). These are produced because the fermion mass matrix

is not diagonal in the same basis as the sfermion mass matrix and A-terms. After changing

to the fermion mass eigenbasis, the sfermion mass matrix acquires off-diagonal components

that, through loop effects, can induce for instance K0 − K̄0 mixing or rare decyas like

µ → eγ. In our model the soft masses in the interaction basis are diagonal in generation

space, so the off-diagonal components induced by the above rotation are much smaller than

the diagonal elements. In this case, constraints from FCNCs place upper bounds on ratios

of the off-diagonal mass components divided by the average sfermion mass [42].

Soft masses (4.28) give contributions ∼ m2
Q̃
(Q̃∗

LQ̃L + Q̃∗
RQ̃R) which do not change

chirality. For these elements, the strongest constraint comes from K −K mixing. These

effects were studied in [4], where it was shown that the bounds are satisfied for composite

masses around 10 − 20TeV. The analysis is similar in our case.

On the other hand, after setting the Higgs to its VEV, A-terms give mass-contributions

A′
dvu(Q̃

∗
LQ̃R+Q̃∗

RQ̃L) that change chirality. These lead to potentially new sources of flavor

violation. We find that the strongest constraint comes from the lepton flavor violating decay

µ → eγ. This bound is satisfied in our model with masses at 10 − 20TeV, if we require

some degeneracy (at the 10− 20% level) between the soft masses. This can be obtained by

a mild tuning of the electric theory parameters, and the tuning decreases with increasing

masses. In summary, the model leads to flavor changing effects satisfying the experimental

bounds, by a combination of decoupling, diagonal soft terms in the interaction basis, and

a mild degeneracy between CW masses.

5 Effective field theory analysis

In sections 2–4 we have described the RG evolution of the system, starting from the micro-

scopic SQCD theory, the generation of flavor textures at Mflavor by dimensional hierarchy,

and then the appearance of light composites giving rise to MSSM matter below the compos-

iteness scale Λ. At the scale hµ̂ the strongly coupled sector admits an effective description in

terms of eq. (4.25). Supersymmetry is dynamically broken and integrating out the heavy

messengers via the Coleman-Weinberg potential (plus gauge mediated effects) generates

finite soft terms that were summarized in section 4.5.

The aim of the next two sections is to link the physics taking place at the messenger

scale with that at MZ , putting special emphasis on the scalar potential for the Higgs

fields and the breaking of the electroweak symmetry. A careful analysis is motivated

by the fact that models with inverted hierarchies and a hybrid Higgs sector exhibit quite

different properties from the usual MSSM spectrum. Since this discussion will be somewhat

technical, the reader interested mainly in the phenomenology at the TeV scale can move

directly to section 6.
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Since so far we described the dynamics of the strongly coupled sector using Seiberg

duality (which follows from a Wilsonian analysis of the interactions) it is natural to study

the flow towards the EW scale in a physical approach that, as the Wilsonian one, takes into

account the decoupling of energy scales. We proceed by constructing successive effective

theories, integrating out particles at their thresholds; this should be done using a mass-

dependent renormalization scheme, which we approximate by defining the β-functions in

a piecewise manner at each energy interval. Besides quantum corrections coming from the

RG flow, we will take into account finite CW effects and two-loop loop gauge mediated

masses.

As explained in section 4.5, below the messenger scale there are three mass hierar-

chies, corresponding to the composite fields (see (4.28)), third generation sfermions (given

in (4.29)), and gauginos (eq. (4.30)). The discussion is simplified by integrating out si-

multaneously particles with similar masses, resulting in only three thresholds below the

messenger scale. We do not decouple the third generation sleptons since their effect in the

RG running of the other parameters is negligible, and in some ranges they tend to be quite

light.

In the following we will focus on the RG evolution produced by these mass hierarchies,

without giving specific numerical details. We will identify the relevant degrees of freedom

in the different energy regimes and determine the dependence of the soft masses and Higgs

VEV at the MZ scale on the messenger scale parameters (hµ̂, µφ) and couplings (hi, λd, λu).

More detailed numerical results, the resulting spectra and low energy phenomenology are

presented in section 6.

5.1 Parametrization of soft terms

It is useful to first recast the soft parameters at the messenger scale in a way that makes

manifest their dependence on (hµ̂, µφ, hi, λi). Throughout, we make use of the running scale

t = log
Q

hµ̂
.

It was argued in section 3.2 that the spontaneous R-symmetry breaking 〈hX〉 dominates

over the explicit breaking µφ, so we find it convenient to trade µφ for the dimensionless

combination

x ≡ 〈hX〉
hµ̂

. (5.1)

As explained in appendix A.2, the dependence of the masses of composite particles on

the microscopic parameters is given by

m2
Hd

(0) =

[
λ2
d

8π2
V̂ cw
HdH

∗

d
(h, x) +

∑

a

CHd
a

(
g2
a(0)

16π2

)2

fgm(h, x)

]
(hµ̂)2

m2
Q̃i

(0) =

[
h2
i

8π2
V̂ cw
Q̃iQ̃∗

i

(h, x) +
∑

a

CQ̃a

(
g2
a(0)

16π2

)2

fgm(h, x)

]
(hµ̂)2 , i = 1, 2 . (5.2)

Here V̂ cw
HdH

∗

d
= V̂ cw

Q̃iQ̃∗

i

are second derivatives of a dimensionless potential V̂ cw defined in

terms of VCW in eq. (A.16). This is useful in order to show explicitly the loop factors and
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dependence on (hµ̂). Similarly, fgm comes from the gauge-mediated two loop potential

(third term in eq. (4.27)).

In the limit of small x, V̂ cw
HdH

∗

d
∼ Ñc(log 4 − 1) as given in (3.4); the full x dependence

is taken into account in the numerical results of section 6. For these masses, one loop

contributions dominate over gauge-mediated two loop effects, which will be neglected in

the analytical formulae of this section.

Third generation sfermion masses arise at two loops,

m2
Q̃3

(0) =
∑

a

CQ̃a

(
g2
a(0)

16π2

)2

fgm(h, x) (hµ̂)2 . (5.3)

On the other hand, mHu receives both one loop (from the trilinear coupling W ⊃ λuZHuZ̃)

and two loop contributions,

m2
Hu

(0) =

[
λ2
u

8π2
V̂ cw
HuH∗

u
(h, x) +

∑

a

CHu
a

(
g2
a(0)

16π2

)2

fgm(h, x)

]
(hµ̂)2 . (5.4)

Even though they appear at different loop orders, both contributions are comparable be-

cause of the smallness of λu. The Bµ term comes from mixed derivatives of the CW

potential,

Bµ(0) = −λuλd
8π2

V̂ cw
HuHd

(h, x) (hµ̂)2 . (5.5)

From eq. (3.4), the small x behavior is V̂ cw
HuHd

∼ −Ñc(1 − log 2).

Finally, gaugino and higgsino masses are parametrized as

mλa
(0) =

g2
a(0)

16π2

(
xfλ(h, x)

)
hµ̂ , µ(0) =

λuλd
16π2

(
xfµ(h, x)

)
hµ̂ . (5.6)

As discussed in section 3.2, these masses vanish linearly with the R-symmetry breaking

parameter x, and fλ and fµ have order one values at x = 0. Choosing the microscopic

parameters to be real, there are no phases in the soft masses.

5.2 Flowing down to the top scale: effective potential method

The flow from the messenger scale down to the top scale is done as follows. Below the mes-

senger scale the effective theory is the MSSM, with boundary values for the soft parameters

obtained in the previous subsection. Between hµ̂ ∼ 200TeV and mCW ∼ 10 − 20TeV the

evolution is dictated by the one loop MSSM RG equations.

At energies Q ∼ mCW, Hd and the heavy generations are integrated out by absorbing

into tree-level parameters their contributions to the one loop potential

VCW =
1

64π2
StrM4

(
log

M2

Q2
− 3

2

)
, (5.7)

where now the role of the cutoff of the effective theory that results from integrating out the

heavy particles is played by the threshold scale Q ∼ mCW, and M is the Hu-dependent

– 27 –



J
H
E
P
0
3
(
2
0
1
1
)
1
1
3

mass-matrix for the heavy MSSM particles, evaluated at Q. These contributions are ab-

sorbed into the low energy masses, producing finite corrections of order

∼ m2
CW

16π2
.

Such contributions are similar to the effects from integrating out the messengers, with the

replacement hµ̂ → mCW. Indeed, in composite models with inverted hierarchies the heavy

generations behave much like messengers (with the obvious difference that the fermions are

kept in the low energy theory).

The outcome is a new effective theory with cutoff mCW, containing only the third

generation sfermions, gauginos and Hu, plus the SM matter. In order to implement cor-

rectly the decoupling of the heavy particles, the β-functions have to be computed in a

mass-dependent scheme [45]. As is usually done, we will approximate the mass-dependent

β-functions by defining them in a stepwise fashion, starting from their MSSM values in a

mass independent scheme and implementing the decoupling of massive particles by simply

removing their contributions to the RG equations below each threshold. This procedure is

then repeated for the stop/sbottom and heavy gauginos.

In the last stage, EWSB is computed in a theory at the top scale, where the dominant

effects come from Hu and the top quark.14 For the purpose of obtaining approximate

analytical formulae, the gauge and Yukawa couplings are considered as inputs at the high

scale.15 The different energy ranges are analyzed, in turn, in sections 5.3 and 5.4.

To make the discussion more concrete, consider a complex scalar φ with soft mass m2
φ,

and a marginal coupling to the light Higgs,

V =
(
m2
φ + y2|H|2

)
|φ|2 + . . . (5.8)

For energy scales above m2
φ, the running Higgs mass m2

Hu
(t) obeys, in a mass-independent

scheme,
dm2

Hu

dt
=

1

8π2
m2
φ + . . . (5.9)

Below the scale Q = mφ, in order to approximate the change of the β-function in a

mass-dependent scheme, this contribution is set to zero, and the particle is integrated out

using (5.7), which now reads

VCW(Q2 = m2
φ) = −

m2
φ

16π2
y2|H|2 + O(|H|6/m2

φ) . (5.10)

The quartic term vanishes at the threshold. Nonrenormalizable terms (kept frozen at and

below the thresholds) give negligible contributions, being suppressed by inverse powers of

mφ. They are ignored in the analytic results below.

14While these are one loop effects in the low energy theory, they arise at two loops in the theory (4.25)

containing all the fields of the magnetic theory. For h . 1 and λu ≪ 1, such effects dominate over the two

loop contributions involving the messengers only, which we have hence neglected. Two loop effects in the

ISS context have been discussed in [43].
15The parameters that are fixed by low energy experiments (such as gauge couplings) have to be evolved

towards the messenger scale accross different thresholds, whose scales depend in turn on the high energy

values of these couplings. This is solved iteratively in the results presented in section 6.
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Using first the RGEs valid at

t > tφ = log
mφ

hµ̂

to compute m2
Hu

(tφ) — with the boundary condition (5.4) — and then combining this with

eq. (5.10), gives a Higgs soft mass mHu in the effective theory below the threshold at tφ
equal to

m2
Hu

(tφ) = m2
Hu

(tφ) −
m2
φ

16π2
y2 . (5.11)

For t < tφ, the contributions of m2
φ to the β-functions are set to zero and, as shown in [44],

the β-function for the Higgs quartic coupling L ⊃ −λ
2 |Hu|4 receives a correction

dλ

dt
= − y4

16π2
+ . . . (5.12)

This plays an important role in increasing the mass of the physical light neutral Higgs.

As a technical aside, it should be noted that this procedure of decoupling of particles

can be justified from a diagrammatic interpretation of the Coleman-Weinberg potential,

making use of the decoupling theorem of [45] to argue that the particle in question can

be eliminated from the effective theory (and β-functions) below its threshold. A transi-

tion to a mass-dependent scheme has to be made so that the theorem applies. This is

implemented, in the procedure explained above, by absorbing at each threshold the quan-

tum contributions due to the corresponding particle into the tree-level parameters of the

effective potential. As a consequence, such parameters suffer threshold corrections and

have a non-continuous dependence on the renormalization scale Q. There are, however, no

discontinuities in the scale dependence of the full effective potential.

The effective potential method for EWSB computations has been widely used (see

e.g. [44]). Combining the RG running of parameters with the CW potential minimizes the

dependence of the effective action on the renormalization scale [46]. Also, the implemen-

tation of the decoupling of particles avoids the breakdown of perturbation theory due to

the appearance of large logarithms in a mass-independent renormalization scheme, and the

integration of fields at each threshold implements some higher loop corrections. Typically,

this approach is applied to the top/stop sector, because the other generations give negligi-

ble contributions. Our main point here is that, in models with inverted hierarchies, effects

from the heavy composites are also important in the calculation of the EWSB vacuum,

and have to be consistently taken into account.

5.3 EFT at the scale of the composite MSSM fields

Let us describe the RG evolution from hµ̂ to mCW, the scale of the MSSM composites.

The soft parameters at t = 0 were defined before and, as usual, the effective potential in

the Higgs sector is

Veff = m2
Hu

|Hu|2 +m2
Hd

|Hd|2 −Bµ(HuHd + c.c.) +
g2
2

2
|H+

u H
0∗
d +H0

uH
−∗
d |2 +

+
1

8

(
g2
2 +

3

5
g2
1

)(
|H0

u|2 − |H0
d |2 + |H+

u |2 − |H−
d |2
)2

+ V MSSM
CW + . . . (5.13)
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Here ‘. . .’ includes irrelevant operators suppressed by inverse powers of hµ̂ which can be

safely ignored, and corrections from the microscopic theory — they are negligible by the

arguments given in [12]. It is convenient to introduce the shorthand notation

λ0 ≡ 1

4

(
g2
2 +

3

5
g2
1

)
(5.14)

for the tree level Higgs quartic coupling, while λ is reserved for the quartic coupling con-

taining quantum effects (to be discussed below). Here g1 is the U(1) ⊂ SU(5)GUT gauge

coupling, related to the conventional hypercharge coupling as g′2 = 3
5g

2
1 .

In the present analysis, the running masses of the heavy composites can be taken to be

constant; the running of the Yukawa couplings can be similarly neglected. This is a rather

good approximation and simplifies many of the formulae. Solving the whole system of

one loop RGEs, we have checked numerically the consistency of this approximation; these

effects are taken into account in the computations leading to the results of section 6.

Clearly, the main changes occur for the TeV scale elementary masses. Our composite

spectrum has two characteristic features that may affect the RG evolution considerably:

• Heavy first and second generation sfermions that enter into the β-functions of Hu and

third generation sfermions via Yukawa couplings, β ∝ y2
im

2
Q̃i

. While such Yukawas

are parametrically smaller than yt and yb, these effects are still important because

mQ̃i
≫ mQ̃3

(i = 1, 2). Such contributions decrease the masses of the elementary

particles.

• A hybrid Higgs sector with m2
Hd

≫ m2
Hu

; this induces a one-loop FI term for U(1)Y ,

S = Tr(Y m2) = m2
Hu

−m2
Hd

+
∑

i

(m2
q̃,i−2m2

ũ,i+m
2
d̃,i
−m2

l̃,i
+m2

ẽ,i) ∼ −m2
Hd

(5.15)

In the RGEs, this contribution increases the masses of fields with positive hypercharge

(and vice-versa). The usual sum rule Tr(Y m2) = 0 is violated and there are strong

effects on the third generation sleptons. See also the related discussion in [21].

First, we show in appendix B that composite fields give small contributions to the run-

ning of mHu and the squark masses, which is dominated by the third generation elementary

fields. The RG running due to the composite fields alone changes m2
Hu

(t) marginally, while

it contributes to a small decrease of the squark masses (e.g. by ∼ 1% for ũ3). Explicit

results at the top scale are shown below.

On the other hand, the running of the third generation slepton masses receives large

corrections from the composite fields. This effect is especially important for the soft mass

m2
l̃,3

, whose β-function can be approximated by

8π2
dm2

l̃,3

dt
≈ y2

l,33(m
2
Hd

+m2
l̃,3

+m2
ẽ,3)−

3

5
g2
1M

2
1 −3g2

2M
2
2 −

3

10
g2
1S+y2

l,32(m
2
Hd

+m2
ẽ,2) . (5.16)

Now all the loop effects from composites decrease this mass squared. Evaluating it at the

scale of the MSSM composites mCW, the condition to avoid a tachyonic slepton requires

ml̃3
(0) & 10−2mCW . (5.17)
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Equivalently, we find a lower bound on the stop mass at the messenger scale,

mq̃,3(0) &
mCW

10
. (5.18)

In other words, the requirement of a non-tachyonic elementary slepton implies that the

stop cannot be much lighter than 2TeV in our composite model.16

Notice that the strong RG effects on the elementary slepton are a direct consequence

of the compositeness of the first SM generations and Hd. These parametrically heavy fields

decrease m2
l̃,3

through both inter-generational mixing and a large U(1)Y FI term. For the

right handed slepton, effects from composite fields are also important but smaller, because

now there is a partial cancellation between the contributions from off-diagonal Yukawa

couplings and the U(1)Y FI term. This generically results in an increase of the mass when

flowing to the TeV scale.

5.3.1 Finite effects from composites

At the scale mCW the MSSM composites are integrated out following section 5.2. First,

since m2
Hd

≫ m2
Hu

, Hd can be simply integrated out by imposing its equation of motion

from eq. (5.13),
H0
d

H∗0
u

≈ Bµ
m2
Hd

(5.19)

valid to lowest order in Hd/Hu. In our conventions Bµ is positive and, in what follows,

the phases of the Higgs VEVs are rotated away. Therefore, we see that the “direction”

of EWSB,

tan β =
vu
vd
, vu ≡ 〈H0

u〉 , vd ≡ 〈H0
d〉 (5.20)

is determined at the scale of the composites to be

tan β =
m2
Hd

Bµ
∼ λd
λu

≫ 1 . (5.21)

This agrees with the result of eq. (3.6). Note that, though the Bµ term generated at

the messenger scale induces a mixing between Hd and Hu, the fact that m2
Hd

≫ Bµ
means that the heavy Higgs eigenstates are essentially aligned with Hd, which can then be

integrated out.

One loop effects from composite fields produce a finite shift to the Higgs mass (analo-

gous to (5.11)), and leave the quartic coupling unchanged — see eq. (5.10). The Coleman

Weinberg contributions to the effective Higgs potential at the threshold due to the com-

posite fields are

VCW ⊃
(
−

B2
µ

m2
Hd

+
3

8π2

[
1

20
g2
1m

2
Hd

− y2
u,22m

2
q̃,2

])
|Hu|2 +O(|H|6) , (5.22)

16The authors of [49] obtained a lower bound on the stop from two loop effects of heavy first and second

generations; in a general scenario, this restricts the possibility of solving the flavor problem by decoupling.

In our composite models such bound is less restrictive than (5.18), which comes primarily from having a

composite Higgs. Indeed, in the absence of a composite Higgs, the bound is closer to mq̃,3(0) ∼ mCW/50.

The flavor problem is solved as explained in [4].
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where all the objects are evaluated at mCW (roughly, the average mass of the composite

fields). The contribution from Q̃2 is subdominant compared to the effect from Hd; however,

the analogous effect for the stop will be important. Even smaller terms from first generation

particles are not shown. In the theory below the threshold, the coefficient of |Hu|2 in

eq. (5.22) is absorbed into the tree-level parameter m2
Hu

at the scale mCW,

m2
Hu

(m2
CW) = m2

Hu
−

B2
µ

m2
Hd

+
3

8π2

[
1

20
g2
1m

2
Hd

− y2
u,22m

2
q̃,2

]∣∣∣∣∣
Q2=m2

CW

. (5.23)

We see that the dominant contribution to the shift of the Higgs mass comes in fact from

Bµ/m
2
Hd

. The β-functions for m2
Hu

and the other soft parameters of the theory below

the threshold are obtained by dropping the contributions of the composites to the MSSM

RGEs, while the β-function for the quartic coupling is modified as in eq. (5.12).

5.4 Integrating out the stop and EWSB

At this stage the effective theory contains Hu, third generation sfermions and gauginos,

plus the SM matter. The RG evolution and CW corrections are given by the well-known

loop effects from third generation particles; gaugino contributions are small. The dominant

contributions of the third generation particles to the CW potential at a scale Q are

VCW(Q) ⊃ − 3

8π2
(yu,33mq̃,3)

2

(
1 − log

m2
q̃,3

Q2

)
|Hu|2 +

3

16π2
y4
u,33 log

m2
q̃,3

Q2
|Hu|4 +

− 3

16π2
y4
u,33|Hu|4

(
log

y2
u,33|Hu|2
Q2

− 3

2

)
. (5.24)

The first term is the familiar negative shift of the Higgs mass produced by the stop, while

the term in the second line comes from loop diagrams with the top quark; A-terms have

been neglected. See also [44].

Integrating out the stop/sbottom at Q = mq̃,3 produces

m2
Hu

(mq̃,3) = m2
Hu

(mq̃,3) −
3

8π2
(yu,33mq̃,3)

2 . (5.25)

The tree-level parameter λ does not receive threshold contributions, though its running

changes below Q = mq̃,3 due to the Q-dependent logarithm in the quartic term in eq. (5.24),

βλ → βλ −
3y4
t

8π2
, (5.26)

a known result in the MSSM decoupling limit. After decoupling the squarks of the third

generation, there remains the threshold of the gauginos. Their finite one loop correc-

tions are negligible, so that their decoupling is simply implemented by a change in the

β-functions.

Finally we have gathered all the necessary results to study the breaking of SU(2)×U(1)

at the top scale mt ≈ yu,33 vu. Minimizing the effective potential

Veff ≈ m2
Hu

|Hu|2 +
λ

2
|Hu|4 −

3

16π2
m4
t

(
log

m2
t

Q2
− 3

2

)
(5.27)
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and evaluating at Q = mt yields

λ(mt) v
2
u = −m2

Hu
(mt) −

3

8π2
y2
u,33m

2
t . (5.28)

The resulting expectation value is real due to the absence of phases in the soft parameters.

This EWSB condition is key in relating the microscopic parameters to known physics at

the top scale. Indeed, following the RG evolution and the threshold corrections of the

parameters m2
Hu

and λ from the messenger scale down to the top scale (as described

above), the Higgs VEV vu is calculated in terms of the high energy parameters, and we

have to search for ranges that yield the correct vu ∼ 174GeV. Furthermore, recalling that

the Yukawa couplings are fixed in the UV theory (at the scale Mflavor), tan β in eq. (5.21)

is determined in terms of the bottom mass.

Let us summarize how m2
Hu

(mt) and λ(mt) are calculated. The Higgs mass parameter

is expressed in terms of the messenger scale parameters by

m2
Hu

(t) =
∑

i

∂m2
Hu

(t)

∂m2
i (0)

m2
i (0) , (5.29)

where the soft parameters m2
i (0) are functions of (hµ̂, x, λu, h) that were described in

section 5.1. Solving eq. (B.1) along the different energy ranges and adding up the finite

corrections reveals that the dominant contributions are: a) dynamical, from the Bµ term

in eq. (5.22); and b) radiative, from stop effects. Other contributions are subleading.

More precisely, the Higgs mass in terms of the magnetic superpotential parameters

becomes

m2
Hu

(t) ≈ (hµ̂)2

8π2

(
λ2
u

(
cHu V̂

cw
HuH∗

u
+cBµ

(V̂ cw
HuHd

)2

V̂ cw
HdH

∗

d

)
+V̂ cw

HdH
∗

d
(h2cq̃,2+λ2

dcHd
)+ (5.30)

+
1

2
fgm

[
cHu

∑

a

CHu
a α2

a+cq̃,3
∑

a

Cq,3a α2
a+cũ,3

∑

a

Cu,3a α2
a

]
+

1

2
(xfλ)

2(cM3
α2

3+cM2
α2

2)

)
.

Here ci ≡ ∂m2
Hu

(t)/∂m2
i (0) and all the running objects are evaluated at t ∼ log mt/(hµ̂).

This makes explicit the dependence on the microscopic parameters. For instance, for

hµ̂ ∼ 200TeV , µφ ∼ 0.7TeV , Ñc ∼ h ∼ λd ∼ 1 , λu ∼ 0.1 (5.31)

the second derivatives are of order

cHu ∼ 0.78 , cBµ ∼ −0.85 , cq̃,2 ∼ −2 × 10−3 , cHd
∼ 3 × 10−3

cq̃,3 ∼ −0.16 , cũ,3 ∼ −0.12 , cM3
∼ −0.05 , cM2

∼ 0.1 . (5.32)

In figure 3 the RG evolution for m2
Hu

is shown. The parameters are the same that give rise

to the spectrum in figure 1. Notice that there are three thresholds, where m2
Hu

receives

finite corrections, with the largest contribution coming from the composite fields (5.23). In

the first two segments of the evolution from the messenger scale Q = hµ̂ to the stop scale

the slopes are almost equal, which reflects the fact that the running is dominated by the

third generation, and the effects of the composites are small.
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Figure 3. RG evolution for m2

Hu

.

With the help of the result (5.30), in the next section we will find realistic EWSB

vacua in the range (5.31), where all the relevant terms contributing to m2
Hu

are of the same

order of magnitude. As we discuss in appendix C, this will grant that EWSB occurs quite

naturally.

The quartic coupling is calculated starting from the tree level coupling λ0 and solving

the modified β-functions (as in eq. (5.26)):

λ(mt) ≈ λ0 −
3

8π2
y4
u,33 log

m2
t

m2
q̃,3

. (5.33)

Contributions from the MSSM composites are negligible. Using this, the one loop mass of

the light physical Higgs (predominantly Re(H0
u)) is

mh(mt)
2 ∼ 2λ(mt)v

2 , (5.34)

(also, see e.g. [50–52]). Our model has a stop around 3TeV, yielding a neutral Higgs around

140GeV. Higher loop effects (not taken into account here) tend to decrease this value. The

full spectrum and low energy predictions are discussed next.

6 Low energy phenomenology

In section 5 we have already outlined general properties of the low-energy physics that we

expect in our model. This section presents results for the spectrum from direct numerical

calculations, solving the coupled RGEs in the step-wise procedure, and including finite

effects, running of Yukawas and decoupling of heavy particles at various thresholds. We

stress that these are one loop results (certain higher loop effects are also included, when

they can be resummed into one loop contributions in the effective potential). A more

detailed two loop analysis is postponed to a future work.

We also perform a scan of the allowed parameter space under some simplifying as-

sumptions explained below. The NLSP (at the one loop level) is found in different energy
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ranges, and the results are presented in the M1–µ plane, figure 5, which may be used for

comparison with projected exclusion plots from Tevatron and (future) LHC searches [53].

6.1 Characteristics of the spectrum

Let us begin by summarizing the main features of the spectrum:

• Composites (i.e. first and second generation sfermions and Hd) have masses

m2
Q̃i

∼ m2
Hd

∼ m2
CW ∼ h2Ñc

16π2
(hµ̂)2 . (6.1)

• Elementaries (i.e. third generation sfermions and Hu) have masses generated from

standard gauge-mediation at two-loops,

Ñc

(
g2

16π2

)2

(hµ̂)2 .

• Gauginos and higgsinos have masses proportional to µφ.

First, there is an inverted hierarchy, with the first two generation squarks and sleptons

being much heavier than their counterparts from the third generation. For parameter

ranges explored here, these masses are of order 10 − 20 TeV. Also, from the hierarchy

m2
Hd

≫ m2
Hu

, the Higgs scalar eigenstates (A0, H±,H0) are much heavier than h0 and

have masses of the same order as the other composites. Ignoring such heavy particles, two

detailed spectra are shown in figure 4, for tan β = 8 and 10, in two parameter regimes,

where the NLSP is neutralino, and sneutrino, respectively. The parameter choices for these

cases are Ñc = 3 and

χ̃0
1 NLSP : Ñc = 3 λd ≈ h ≈ .72 , µ̂ ≈ 314TeV , µφ ≈ 2TeV , λu ≈ 0.15

ν̃ NLSP : Ñc = 1 , λd ≈ h ≈ 2 , µ̂ ≈ 93TeV , µφ ≈ 0.5TeV , λu ≈ 0.27 . (6.2)

Higher loop effects could give important corrections, particularly in the case of the sneutrino

NLSP (see discussion below). It should be noted that the sneutrino NLSP case above could

be unstable towards decay into other vacua (see section 4.4); however, it is possible that

µφ effects which were ignored in the tunneling computations could enhanced the lifetime

of the ISS vacuum. Also, for higher values of tanβ the sneutrino region moves to lower

values of h guaranteeing a suppressed decay rate of the vacuum.

Let us now focus on the fermion masses. It is possible to choose the microscopic

parameters such that both gaugino and higgsino masses are real and positive, so there are

no CP violating effects. (We remind the reader that we work in the usual convention where

〈H0
u〉, 〈H0

d 〉 and Bµ are real and positive.)

The suppression factor λu, coming from a dimension 5 operator in the electric theory,

implies that in general the NLSP is mostly higgsino. There are however, certain param-

eter regimes where the sneutrino becomes the NLSP, in agreement with the analysis of

eq. (5.16), (5.17). In these cases there is also a slightly heavier stau. Some comments

about fine-tuning in this setup can be found in appendix C.

– 35 –



J
H
E
P
0
3
(
2
0
1
1
)
1
1
3

t
�

L

t
�

R

b
�

L b
�

R

Τ
�

L

Τ
�

R

Ν
�
Τ

M3

M2

M1

h Χ
�

1 Χ
�

2

Χ
�

3

Χ
�

4

Χ
�

1
+-

Χ
�

2
+-

0

1

2

3

4

5

m
as

se
s
HT

eV
L

t
�

L

t
�

R

b
�

L b
�

R

Τ
�

L

Τ
�

RΝ
�
Τ

M3

M2

M1 h Χ
�

1
Χ
�

2
Χ
�

3

Χ
�

4

Χ
�

1
+-

Χ
�

2
+-

0.0

0.5

1.0

1.5

2.0

m
as

se
s
HT

eV
L

Figure 4. Sample spectra focusing on the masses around 1TeV, for Ñc = 3, tanβ ∼ 8 with higgsino

NLSP and Ñc = 1, tanβ ∼ 10 with sneutrino NLSP.

6.2 Parameter space and NLSP

In order to understand the range of predictions of the model, it is important to systemati-

cally scan the parameter space. A full analysis of the parameter ranges is left for the future;

here we restrict to the case h ≈ hi ≈ λd. Then the input parameters at the messenger

scale are

λd , hµ̂ , λu , Ñc and µφ . (6.3)
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Figure 5. µ versus M1 parameter space for Ñc = 3 and tanβ ∼ 6.5. The region consistent with

EWSB, absence of tachyons and higgsinos heavier than 150GeV is depicted in blue. The teal region

indicates all models that have higgsinos with a mass below that bound — which is only orientative.

For these values of tanβ and Ñc there is no region with sneutrino NLSP. Two loop effects have

been neglected in this analysis.

The first consistency condition is the absence of tachyons; as explained around

eq. (5.17), these could come primarily from light third generation fields. This implies

that h cannot be much larger than one. Next, predicting the correct EWSB vacuum can

be used to fix the messenger mass hµ̂ in terms of the other parameters. This relation

follows from eqs. (5.28) and (5.30).

Furthermore, the top and bottom mass ratio fixes a relation between tan β and the

Yukawa couplings. In scanning the parameter space it is useful to keep the Yukawas, and

thus tan β fixed. Given the approximate relation eq. (5.21), λd can be eliminated in favour

of λu. This motivates scanning the parameter space in terms of λu and µφ alone, for a

given value of tan β. The light masses which are most sensitive to such parameters are the

higgsino and bino masses, respectively. So we present our results in the µ–M1 plane.

The parameter scan in figure 5 for Ñc = 3, tan β ∼ 6.5 shows two regions in the µ–

M1-plane. The boundary to the right comes from requiring λu . 0.4. Extending the scan

further to the right is possible, but such larger values would not be generated naturally from

the UV electric theory. The blue region corresponds to models that have consistent EWSB,

no tachyons and an NLSP which is predominantly higgsino-like. We have distinguished the

teal region out of the blue region; this corresponds to models that are consistent with

EWSB and that have a neutralino lighter than 150 GeV. Moving closer to the origin,

the bino component of the NLSP becomes larger. These models could be ruled out by

Tevatron [53].

We see that in most cases the NLSP is mostly higgsino-like, which can be understood
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Figure 6. RG evolution for the stau mass eigenvalues (dashed lines) and sneutrino mass (contin-

uous line).

from µ < M1,M2. Writing the lightest neutralino as a linear combination

χ̃0
1 =

4∑

i=1

N1,iψ̃
0
i , where ψ0

i = (B̃, W̃ , ψHu , ψHd
) . (6.4)

We have |N13|, |N14| > |N11|, |N12|, and the sign of the fourth eigenvalue is sign(N14) <

0. [53] then suggests that the higgsino-like NLSP should decay mostly to Z’s. The detailed

structure of decays and final states depends also on the mass splitting between the lightest

neutralino and chargino.

On the other hand, the case of sneutrino NLSP is also of particular interest, as this

is not easy to realize in perturbative scenarios. For the region of parameters that we

studied, and computing the masses using tree level (soft plus Higgs induced mass terms)

and one loop RG effects, whenever a slepton was the NLSP, it was the sneutrino. This

intriguing possibility has been recently studied in [54]. This might seem surprising at

first sight, because the gauge mediated slepton mass m2
l̃3

(which determines the sneutrino

mass eigenvalue) is larger than m2
ẽ3

. However, in our case we have strong RG effects from

the composite generations, coming from off-diagonal Yukawas and a large U(1)Y FI term,

caused by the composite Hd — see eqs. (5.16) and (5.17). This produces an inversion in

the hierarchy between m2
l̃3

and m2
ẽ3

. The sneutrino and the lightest stau mass eigenvalues

become similar, the latter turning a bit heavier due to the leptonic Yukawa coupling and

the Higgs D-term contributions.

Since the splitting between these masses ends up being quite small (around 15 GeV),

two loop corrections might become important and could alter the picture; we leave a more

detailed analysis for future work. The running mass eigenvalues — neglecting the running

of the Higgs VEVs — for the same choice of parameters that led to figures 1 and 3 are

shown in figure 6.
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6.3 Concluding remarks

Let us conclude with some brief remarks about our construction and possible future di-

rections. We have argued that SQCD with flavors and an adjoint, plus an appropriate

superpotential, can simultaneously generate dynamically the electroweak scale, explain the

flavor hierarchies (as in [3, 4]) and produce a realistic low energy spectrum. It is rather

intriguing that the complicated structure of the MSSM can originate from a quite simple

microscopic theory.

It is necessary to point out that, since the electric theory is vector-like, it suffers from

the existence of extra matter near the compositeness scale. We have not addressed this

aspect here, because it does not affect the EW effective theory or the soft parameters. It

would be useful to understand better their role, and to find models where unification occurs

naturally.

The theory at the TeV scale also exhibits an interesting phenomenology, which we have

begun to explore in this work. A striking feature is that a small number of microscopic

couplings controls all the soft parameters and EW scale; this produces nontrivial relations

between the MSSM sectors, that can also vary along the parameter space of the model. We

have restricted to the case where the cubic couplings produced by Seiberg duality are all of

the same order of magnitude, hi ∼ λd. New effects are expected away from this subspace.

A more detailed analysis, including possible collider signatures, is left to future work.
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A One loop computations at the messenger scale

The analysis of the one loop effects in the ISS model with quadratic deformation has already

been performed in [22], and the first part of this appendix summarizes these results (with

the addition of background Higgs fields). The second part presents details of the soft term,

and the calculation of the one loop µ-term.

A.1 Single-sector Coleman-Weinberg contributions

We perform, as in [12], a calculation of the contributions to the one-loop Coleman-Weinberg

potential of the heavy messenger fields ρ, ρ̃, Z, Z̃ , which allows us to understand the sta-

bilization of X and the computation of soft terms for the Higgs fields and composite
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generations. Namely, X, the Higgs fields and the composite MSSM generations are treated

as background fields, and the heavy messengers are integrated out.

From eqs. (3.2) and (4.25), the relevant superpotential terms are

Wmag = tr
(
ρ Z

)(hX + hiΦ
SM
i + λdHd hµ̂

hµ̂ h2µφ + λuHu

)(
ρ̃

Z̃

)
, (A.1)

giving a field-dependent supersymmetric mass matrix

Mf =

(
hX + hiΦ

SM
i + λdHd hµ̂

hµ̂ h2µφ + λuHu

)
. (A.2)

To simplify our formulae, we absorb the composite generations into X (i.e. hX+hiΦ
SM
i →

hX) since their dependence can be easily restored at the end.

The only background superfield with an F -term is trX. Therefore the bosonic mass

matrix for (ρ, Z) is

M2
b =

(
M †
fMf −h∗F ∗

X

−hFX MfM
†
f

)
, (A.3)

where

− F ∗
X = h

(
−µ̂2 + hµφX 0

0 0

)
. (A.4)

Regrouping the fields as

ψ̂ =
(
ψρ ψZ

)T ˆ̃
ψ =

(
ψρ̃ ψZ̃

)T
φ̂ =

(
ρ Z ρ̃∗ Z̃∗

)T
(A.5)

the mass terms give

Lmass = − ˆ̃ψMf ψ̂ − h.c. − φ̂†M2
b φ̂ . (A.6)

The messenger mass matrices can be diagonalized by unitary matrices Uf , Ũf and Ub
such that

ψ = Uf ψ̂ ψ̃ = Ũf
ˆ̃ψ φ = Ubφ̂ (A.7)

where ψ, ψ̃ and φ are messenger mass eigenstates. The quadratic Lagrangian for the

messengers is therefore of the canonical form

Lmess = −
4∑

a=1

φ†a
(
D2 + m̃2

a

)
φa +

+

2∑

a=1

(
ψ̄aiσ̄

µDµψa +
¯̃
ψaiσ̄

µDµψ̃a −ma(ψ̃aψa +
¯̃
ψaψ̄a)

)
. (A.8)
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The fermionic and bosonic mass eigenvalues are

m2 = |hµ̂|2 +
1

2
|hX + λdHd|2 +

1

2
|h2µφ + λuHu|2 (A.9)

+
1

2
σ

√
(|hX+λdHd|2−|h2µφ+λuHu|2)2+4|hµ̂(hX+λdHd)∗+(hµ̂)∗(h2µφ+λuHu)|2

m̃2 = |hµ̂|2 +
1

2
|hX + λdHd|2 +

1

2
|h2µφ + λuHu|2 +

1

2
η|(hµ̂)2 − h2µφ(hX + λdHd)|

+
1

2
σ
[ (

|hX + λdHd|2 − |h2µφ + λuHu|2 + η|(hµ̂)2 − h2µφ(hX + λdHd)|
)2

+

4|(hµ̂)(hX + λdHd)
∗ + (hµ̂)∗(h2µφ + λuHu)|2

]1/2
. (A.10)

Here σ = ±, η = ±; the fermion masses have multiplicity 4NcÑc and the complex bosons

have multiplicity 2NcÑc. In the main part of the paper we set Ñc = 1.

One loop effects from integrating out the messengers (at their average mass hµ̂) give

the effective potential

VCW =
1

32π2

( 4∑

i=1

m̃4
i

(
log

m̃2
i

(hµ̂)2
− 3

2

)
− 2

2∑

a=1

m4
a

(
log

m2
a

(hµ̂)2
− 3

2

))
. (A.11)

A.2 Bosonic soft terms at the messenger scale

Soft terms are identified by expanding the potential around 〈hX〉 (eq. (3.11)), while the

VEVs for the Higgs fields are negligible at this stage. For the bosonic fields this gives

VCW(hµ̂) = m2
Q̃i

|Q̃i|2+m2
Hu

|Hu|2+m2
Hd

|Hd|2−(BµHuHd + c.c.) (A.12)

−Aiju (Q̃iHuQ̃j)−Aijd (Q̃iHdQ̃j)−A
′ ij
u (Q̃iH

†
dQ̃j)−A

′ ij
d (Q̃iH

†
uQ̃j)− c.c.+ . . . ,

where Q̃i denote the first two composite MSSM generations, arising form the lowest com-

ponents of the superfields ΦSM
i in (A.2). Also, ‘. . .’ are quartic and higher order corrections,

which are much smaller than the tree level D-term potential for H.

The soft parameters depend on the X VEV. For µφ = 0, the pseudo-modulus is

stabilized at the origin and the soft terms were given in section 2.2; the A-terms vanish

in this limit. However, as explained in section 3.2, in this case there is an unbroken R-

symmetry that forbids gaugino and higgsino masses. Switching on the quartic deformation

µφ 6= 0 shifts the metastable vacuum to

〈hX〉 ≈ 8π2

Ñc(log 4 − 1)
µ∗φ . (A.13)

The R-symmetry is both spontaneously and explicitly broken, the first one dominating.

It is convenient to introduce the dimensionless R-symmetry breaking order parameter

x ≡
∣∣∣∣
〈X〉
µ̂

∣∣∣∣ . (A.14)
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The mass terms at the messenger scale receive the following corrections to lowest order in x,

m2
Hd

=
λ2
dÑc

8π2

(
(log 4 − 1) − 1

3
(12 log 2 − 7)x2 + O(x4)

)
(hµ̂)2

m2
Hu

=
λ2
uÑc

8π2

(
−(1 − log 2) +

5

6
(4 − 3 log 2)x2 + O(x4)

)
(hµ̂)2

Bµ =
λuλdÑc

8π2

(
(1 − log 2) − 2

3
(5 − 6 log 2)x2 + O(x4)

)
(hµ̂)2 . (A.15)

CW masses for the composite generations are obtained from m2
Hd

by the replacement

λd → hi. For simplicity, in this paper we have focused on the case in which all the trilinear

couplings generated by Seiberg duality are of the same order, namely, λd ∼ hi ∼ h.

The mass squared for Hu starts tachyonic for small x, but then becomes positive

for x & 0.5. In fact, this is the regime where realistic gaugino and higgsino masses are

generated — these are explained below. For such values of x, the nonlinearities from (A.11)

become important, and higher order terms have to be added to (A.15).

It turns out to be useful to define a dimensionless potential from the one-loop CW

potential (second term in eq. (4.27)), as follows:

(hµ̂)4

8π2
V̂ cw(h, x) ≡ 1

64π2
StrM4

(
log

M2

(hµ̂)2
− 3

2

) ∣∣∣∣
λd=λu=hi=1

. (A.16)

Here M is the (field-dependent) mass matrix of the messengers. The trilinear couplings

λd, λu, hi are set to one because in future formulae we will indicate the explicit dependence

of V̂ cw — and hence of the soft parameters — on them; this dependence will be given

simply by loop counting factors proportional to λd, λu, hi.

Analogously, the gauge-mediated two loop potential (third term in eq. (4.27)) can be

written as

V 2-loop
GM = fgm(h, x) (hµ̂)2

∑

i, a

Cia

(
g2
a

16π2

)2

|φi|2 (A.17)

for the light scalars φi, where Cia denotes the quadratic Casimir for the group labelled by

a in the corresponding representation of φi. In the limit in which R-symmetry is restored,

fgm(h, 0) ∼ 1 (more precisely, it is proportional to the number of messengers); then it

receives small corrections from nonzero x.

The soft masses are computed from the second derivatives of V̂ cw,

m2
Hd

=
λ2
d

8π2
V̂ cw
HdH

∗

d
(h, x) (hµ̂)2

m2
Hu

=
λ2
u

8π2
V̂ cw
HuH∗

u
(h, x) (hµ̂)2

Bµ = −λuλd
8π2

V̂ cw
HuHd

(h, x) (hµ̂)2 . (A.18)

Two loop gauge mediated effects are important in m2
Hu

. These were parametrized in

eq. (5.4) in terms of the dimensionless function fgm(h, x), computed with the help of [40].
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fgm is of order of the number of 5+5 messenger pairs, and here corrections from x are not

very important.

Regarding the A-terms, if they are consistent with the tensor product of SU(5)SM

representations, their analytic expressions at small x are

Au =
h2Ñcλu
24π2

(6 log 2 − 5)xhµ̂+ O(x2)

Ad =
h2Ñcλd
120π2

(41 − 60 log 2)x3 hµ̂+ O(x4)

A′
u =

h2Ñcλd
48π2

(12 log 2 − 7)xhµ̂+ O(x2)

A′
d =

3h2Ñcλu
160π2

(43 − 60 log 2)x3 hµ̂+ O(x4) . (A.19)

In the example considered in this work, where the messenger fields transform in SU(5)

representations 5 and 5̄, only the Ad and A′
d trilinear couplings will be nonzero.

A.3 Higgsino and gaugino masses

In this subsection, we briefly discuss the explicit one-loop effects that generate gaugino and

higgsino masses.

The µ term is computed from a one-loop diagram with external fermion legs Hu and

Hd, and with ρ and Z running in the loop. There is a factor of λuλd from the vertices, and

also a factor of hµ̂ coming from the loop.

Following the notation of the appendix in [22], the Feynman diagram gives

µ = −λuλd
16π2

2∑

i=1

4∑

j=1

I(m̃j,mi)
(
Ub,j4U

∗
b,j1U

∗
f,i2Ũ

∗
f,i1 + Ub,j3U

∗
b,j2U

∗
f,i1Ũ

∗
f,i2

)
, (A.20)

where

I(m̃j ,mk) = mk

[
ln

(
Λ2

cutoff

m2
k

)
−

m̃2
j

m̃2
j −m2

k

ln

(
m̃2
j

m2
k

)]
. (A.21)

The one loop µ term is finite, independent of the cutoff scale Λcutoff . Evaluating this gives

µ ≈ λuλd Ñc
〈hX〉
16π2

≈ λuλd µφ , (A.22)

which vanishes in the limit in which the U(1)R is unbroken. This can be understood from

the R-charge assignments of eq. (2.25).

Gaugino masses are computed again from one-loop diagrams with scalar and fermion

messenger fields ρ, Z running the loop. Quoting [22], for a strongly coupled sector with a

trivial magnetic group,

mλ = − 2g2

16π2

2∑

c=1

2∑

d=1

4∑

j=1

2∑

k=1

(U∗
f )kc (Ũ∗

f )k,d (Ub)jc (U
∗
b )j,d+2 I[m̃j ,mk] ∼ g2µφ . (A.23)

As expected, they are proportional to the R-symmetry breaking parameter µφ.
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B Quantum effects from MSSM fields

In this appendix we present some formulae used in the computation of quantum effects

below the messenger scale, produced by loops of MSSM fields. This includes corrections

calculated from eq. (5.7), as well as from the RG flow. We also estimate the size of the

two-loop effects on the light soft masses.

The fields that dominate the Higgs-dependent contributions to the effective potential

are, from eq. (5.7), those with larger soft masses and/or stronger couplings to the Higgs

in their mass matrices. Since the first two generations have extremely heavy soft masses,

their contributions to VCW are important (actually, the second generation dominates).

Analogously, the heavy neutral and charged Higgs mass eigenvalues have to be taken

into account. In the third generation, it suffices to consider the squark, sbottom and

top quark. Effects from A-terms are subdominant: for the composite generations they are

much smaller than the other soft masses, while for the elementary third generation they are

generated through gauge mediation and hence negligible. Finite effects from off-diagonal

Yukawa couplings are also very small, and will not be included; they will be taken into

account in the running of the couplings.

For instance, the Higgs-dependent mass of q̃L in the generation i reads

m2
q̃,i,L = m2

q̃,i + y2
u,ii|H0

u|2 +
1

4

(
g2
2 − 1

5
g2
1

)(
|H0

d |2 − |H0
u|2
)
,

where m2
q̃,i is the soft mass and yu,ii is the corresponding diagonal element in the Yukawa

matrix. The Hd-dependent term in this mass introduces quantum corrections to the down-

type Higgs parameters. However, since this composite Higgs has quite a heavy mass of the

order of mCW, it can in practice be neglected. On the other hand, the Hu-dependent mass

term gives large contributions, as we have discussed in section 5 and section 6. The other

sparticle masses may be found in e.g. [57].

B.1 One loop MSSM β-functions

For completeness, we reproduce below the one loop MSSM REGs for the soft parameters,

including inter-generational mixing, but ignoring A-terms. These are taken from [47, 48];

here t = log(Q/hµ̂), Q being the renormalization scale:

dµ

dt
=

µ

8π2

(
− 3

5
g2
1 − 3g2

2 + tr(y2
l + 3y2

d + 3y2
u)

)
,

dBµ
dt

=
µ2

16π2

(
− 3

5
g2
1M1 − 3g2

2M2

)
+
Bµ
8π2

(
− 3

5
g2
1 − 3g2

2 + tr(y2
l + 3y2

d + 3y2
u)

)
,

dm2
Hu

dt
=

1

8π2

(
− 3

5
g2
1M

2
1 − 3g2

2M
2
2 +

3

10
g2
1S + 3

∑

ij

y2
u,ij(m

2
Hu

+m2
q̃,i +m2

ũ,j)

+ 2µ2

(
−3

5
g2
1 − 3g2

2 + tr(y2
l + 3y2

d + 3y2
u)

))
,
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dm2
Hd

dt
=

1

8π2

(
− 3

5
g2
1M

2
1 − 3g2

2M
2
2 − 3

10
g2
1S + 3

∑

ij

y2
d,ij(m

2
Hd

+m2
q̃,i +m2

d̃,j
)

+
∑

ij

y2
L,ij(m

2
Hd

+m2
l̃,i

+m2
ẽ,j) + 2µ2

(
−3

5
g2
1 − 3g2

2 + tr(y2
l + 3y2

d + 3y2
u)

))
,

dm2
q̃,i

dt
=

1

8π2

(
− 1

15
g2
1M

2
1 − 3g2

2M
2
2 − 16

3
g2
3M

2
3 +

1

10
g2
1S +

∑

j

[y2
u,ij(m

2
Hu

+m2
q̃,i +m2

ũ,j)

+ y2
d,ij(m

2
Hd

+m2
q̃,i +m2

d̃,j
)]

)
,

dm2
ũ,i

dt
=

1

8π2

(
− 16

15
g2
1M

2
1 − 16

3
g2
3M

2
3 − 2

5
g2
1S + 2

∑

j

y2
u,ji(m

2
Hu

+m2
ũ,i +m2

q̃,j)

)
,

dm2
d̃,i

dt
=

1

8π2

(
− 4

15
g2
1M

2
1 − 16

3
g2
3M

2
3 +

1

5
g2
1S + 2

∑

j

y2
d,ji(m

2
Hd

+m2
d̃,i

+m2
q̃,j)

)
,

dm2
l̃,i

dt
=

1

8π2

(
− 3

5
g2
1M

2
1 − 3g2

2M
2
2 − 3

10
g2
1S +

∑

j

y2
l,ij(m

2
Hd

+m2
l̃,i

+m2
ẽ,j)

)
,

dm2
ẽ,i

dt
=

1

8π2

(
− 12

5
g2
1M

2
1 +

3

5
g2
1S + 2

∑

j

y2
l,ji(m

2
Hd

+m2
ẽ,i +m2

l̃,j
)

)
,

where

S = tr(Y m2) = m2
Hu

−m2
Hd

+
∑

i

(
m2
q̃,i − 2m2

ũ,i +m2
d̃,i

−m2
l̃,i

+m2
ẽ,i

)
.

The µ-dependent terms in the β-functions of m2
Hu

and m2
Hd

arise because the µ term

in our case corresponds to a higgsino mass, instead of a superpotential parameter. Note

that in the scalar potential (5.13), (5.27) there are no µ-terms appearing.

Summarizing the approach described in section 5, the RG flow to the scale of the

top mass is implemented in a mass-dependent scheme by integrating out particles at their

decoupling thresholds, which requires correcting the RG equations on each energy interval.

For the soft masses, this amounts to dropping the contributions to the beta functions

proportional to the soft masses of the integrated-out particles. In the case of the gauge

couplings and gaugino masses (not shown above), the β-function coefficient is computed

at each energy interval from the general one loop formula for a theory with an arbitrary

number of scalar and fermion multiplets, only counting the fields with masses below the

upper threshold.

To illustrate some of the points in section 5.3, let us analyze the leading contributions

to the RGEs of Hu and stops,

8π2 dm
2
Hu

dt
≈ 3y2

u,33(m
2
Hu

+m2
q̃,3+m2

ũ,3) −
3

5
g2
1M

2
1 − 3g2

2M
2
2 +

3

10
g2
1S + 3y2

u,32(m
2
q̃,2+m2

ũ,2)

8π2
dm2

q̃,3

dt
≈ y2

u,33(m
2
Hu

+m2
q̃,3+m2

ũ,3) −
1

15
g2
1M

2
1 − 3g2

2M
2
2 − 16

3
g2
3M

2
3 +

+
1

10
g2
1S + (y2

u,32m
2
ũ,2+y2

d,32m
2
d̃,2

) + y2
d,33m

2
Hd

– 45 –



J
H
E
P
0
3
(
2
0
1
1
)
1
1
3

8π2
dm2

ũ,3

dt
≈ 2y2

u,33(m
2
Hu

+m2
q̃,3+m2

ũ,3) −
16

15
g2
1M

2
1 − 16

3
g2
3M

2
3 − 2

5
g2
1S + y2

u,32m
2
q̃,2 . (B.1)

Contributions from inter-generational mixing with the heavy sfermions, the U(1)Y FI term

and Hd are now manifest.

In the approximation where the heavy masses do not run, this closed system of equa-

tions can be easily diagonalized, yielding analytical expressions for m2
Hu, m

2
q̃,3 and m2

ũ,3

in terms of the microscopic parameters (hµ̂, x, λu, λd). We find that composite fields give

small contributions to the running of m2
Hu

and m2
q̃3

, the reason being a (partial) cancel-

lation of the effects from S and inter-generational mixing. The effect on m2
ũ3

is slightly

larger, but still at the percent level.

On the other hand, there are strong effects on the running slepton mass, because the

boundary soft mass is smaller, and contributions from S and off-diagonal Yukawas now

add up. This was analyzed in section 5.3.

B.2 Two loop effects

In models with heavy first and/or second generations at the multi-TeV scale, it is known

that two loop effects on the light third generation sfermions can become important and

in fact dominate over one loop effects [49]. We now estimate such contributions in our

context.

The two loop MSSM RGEs can be found in the second reference of [47, 48]. For

example, the two loop contribution to the beta function for the third generation slepton is

(excluding a factor of 1/(16π2)2)

β
(2)

L̃3

=
621

25
g4
1M

2
1 +

18

5
g2
2g

2
1

(
M2

1 +M2M1+M2
2

)
+33g4

2M
2
2 − 6g2

1S ′

5
+

3

5
g2
1σ1 +3g2

2σ2 . (B.2)

Smaller contributions from Yukawas have been neglected, and

S ′ = 2
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+
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(B.3)

Here we already made the simplifying assumptions appropriate in our context, that the

first two generations give the dominant contribution and that, approximately their masses

are degenerate. In particular mũ1,2
is the average mass of the first and second generation.

Two loop contributions tend to decrease the soft masses. Evaluating these effects in

our range of parameters (where composites have mass mCW ∼ 10 − 20 TeV), the two loop

correction to the stop squared mass is found to be approximately one order of magnitude

smaller than the one loop effects we have included. These effects are also in general small
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for sleptons, except in the regime where the NLSP is the sneutrino. In this case they

become important, and it would be interesting to understand better how they modify the

properties of the NLSP. We leave this for future work.

C Comments about fine-tuning

In our proposal, supersymmetry breaking and EWSB have a unified origin, so it is interest-

ing to understand how sensitive the vacuum vu ∼ 174GeV is to changes in the microscopic

parameters (denoted below by ‘a’). The basic naturalness criterion, given for instance

in [55], is that

∆(M2
Z) ≡

∣∣∣∣
a

M2
Z

∂M2
Z

∂a

∣∣∣∣ (C.1)

should not be too large. (We refer the reader to [56] for a bottom-up analysis of tuning

over the MSSM parameter space, and for references.)

This places upper bounds on the masses of heavy superpartners, so the first worry is

that heavy composite generations require un-naturally large cancellations. However, this

is not the case because the Higgs mass is quite insensitive to quantum effects from such

particles; this was found in [13, 14], and can be seen directly from the smallness of the

coefficient cq̃,2 in (5.30). This equation also shows that m2
Hu

is quite insensitive to the heavy

Higgs as well — in fact, there are partial cancellations between both effects. Composite

masses of the order 10 − 20TeV give a (mild) fine-tuning of order 10%.

The Higgs VEV is most sensitive to the masses of the stop and Hu. Naively, having a

stop around 3TeV, as is the case in many of the examples above, leads to a fine tuning gen-

erally much larger than a part in 100. However, this low energy estimate is not completely

correct, because the soft masses at the TeV scale are correlated, all being determined by a

few microscopic parameters (hµ̂ , x , λu , h). This tends to reduce the amount of fine-tuning.

Furthermore, the solution (5.30) reveals that the influence of the stop is somewhat smaller

than expected. The total fine-tuning measure in the range of (5.31) is slightly below the

percent level, so that the model is somewhat tuned. The underlying reason for this is the

rather strong assumption that a single-sector dynamics be simultaneously responsible for

the EW scale, soft parameters and flavor textures.

Open Access. This article is distributed under the terms of the Creative Commons
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