234 research outputs found

    Simulating complex social behaviour with the genetic action tree kernel

    Get PDF
    The concept of genetic action trees combines action trees with genetic algorithms. In this paper, we create a multi-agent simulation on the base of this concept and provide the interested reader with a software package to apply genetic action trees in a multi-agent simulation to simulate complex social behaviour. An example model is introduced to conduct a feasibility study with the described method. We find that our library can be used to simulate the behaviour of agents in a complex setting and observe a convergence to a global optimum in spite of the absence of stable states

    Emergence of metapopulations and echo chambers in mobile agents

    Get PDF
    Multi-agent models often describe populations segregated either in the physical space, i.e. subdivided in metapopulations, or in the ecology of opinions, i.e. partitioned in echo chambers. Here we show how the interplay between homophily and social influence controls the emergence of both kinds of segregation in a simple model of mobile agents, endowed with a continuous opinion variable. In the model, physical proximity determines a progressive convergence of opinions but differing opinions result in agents moving away from each others. This feedback between mobility and social dynamics determines to the onset of a stable dynamical metapopulation scenario where physically separated groups of like-minded individuals interact with each other through the exchange of agents. The further introduction of confirmation bias in social interactions, defined as the tendency of an individual to favor opinions that match his own, leads to the emergence of echo chambers where different opinions can coexist also within the same group. We believe that the model may be of interest to researchers investigating the origin of segregation in the offline and online world

    Individual Actions as Community Informative Resources. A Collective Informative Systems Approach

    Get PDF
    This paper conceives communities (in this case, partnerships) as being able to become collective informative repositories of individual and collective actions that may better-inform their members. This paper presents one approach for studying if a community has become such an informative repository. The approach used here consists of introducing a formal language (Viable Systems Modelling, VSM) into one of the community nodes (a participant) and tracing if its use is seen in another node (another participant) - indicating the presence of a process of diffusion. This research design has been tested in a crime-reduction partnership in the UK. One of its members was asked to engage in the design and testing of this approach as a co-researcher. As a result, a questionnaire to map communication and control devices inside an organization was jointly developed. In keeping with VSM principles, the questionnaire encouraged participants to reflect on attenuation and amplification processes within their communications channels. To test the quality of the outcomes of this approach, members from another crime-reduction partnership were also invited to answer the survey; this was to confirm that VSM notions were not evident for those outside the development and testing of the questionnaire. The questionnaire indicated also its capability to make visible communication and organizational processes within collectives and its potential to stimulate self-organization, for those individuals who became familiar with VSM. Furthermore, this approach provided the authors with the capability to study information flows inside the two collectives, and contributed to an understanding of these flows as a model for building and maintaining a Community Informative System

    Sub-Telomeric core X and Y' Elements in S.cerevisiae Suppress Extreme Variations in Gene Silencing

    Get PDF
    Telomere Position Effect (TPE) is governed by strong repression signals emitted by telomeres via the Sir2/3/4 Histone Deacetylase complex. These signals are then relayed by weak proto-silencers residing in the subtelomeric core X and Y' elements. Subtelomeres also contain Sub-Telomeric Anti-silencing Regions (STARs). In this study we have prepared telomeres built of different combinations of core X, Y' and STARs and have analyzed them in strains lacking Histone-Acetyltransferase genes as well as in cdc6-1 and Ξ”rif1 strains. We show that core X and Y' dramatically reduce both positive and negative variations in TPE, that are caused by these mutations. We also show that the deletion of Histone-Acetyltransferase genes reduce the silencing activity of an ACS proto-silencer, but also reduce the anti-silencing activity of a STAR. We postulate that core X and Y' act as epigenetic β€œcushioning” cis-elements

    Fuel Conditions Associated with Native and Exotic Grasses in a Subtropical Dry Forest in Puerto Rico

    Get PDF
    Exotic grasses capable of increasing frequency and intensity of anthropogenic fire have invaded subtropical and tropical dry forests worldwide. Since many dry forest trees are susceptible to fire, this can result in decline of native species and loss of forest cover. While the contribution of exotic grasses to altered fire regimes has been well documented, the role of native grasses in contributing to fuel loads in dry forest has received little attention. We assessed differences in fuel conditions among native and exotic grasses within a subtropical dry forest preserve in Puerto Rico. We quantified fine fuel loads, fuel continuity, and seasonal changes in percent dead grass among the following grass patch types: (1) native grass with no known history of recent fire, (2) exotic grass that had burned once (single burn), and (3) exotic grass that burns frequently. Sampling was conducted during one wet season (August to October 2008) and again in the following dry season (February to March 2009). Overall, fine fuel loading was highest in native grass, but this was due to woody fuels rather than grass fuels. Percent of dead grass fuels increased with the transition from wet to dry season, and this increase was more pronounced for exotic grasses. Fuel continuity was highest in frequently burned exotic grass. Differences in grass phenology and fuel continuity may contribute to differences in fire frequency among native and exotic grass patches. Fuel management focused on prescribed fire should be used in conjunction with restoration of tree canopy to reduce fuels and limit development of a grass-fire cycle

    Family-based association study of the BDNF, COMT and serotonin transporter genes and DSM-IV bipolar-I disorder in children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over the past decade pediatric bipolar disorder has gained recognition as a potentially more severe and heritable form of the disorder. In this report we test for association with genes coding brain-derived neurotrophic factor (<it>BDNF</it>), the serotonin transporter (<it>SLC6A4</it>), and catechol-O-methyltransferase (<it>COMT</it>).</p> <p>Methods</p> <p>Bipolar-I affected offspring triads (N = 173) were drawn from 522 individuals with 2 parents in 332 nuclear families recruited for genetic studies of pediatric psychopathology at the Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD at Massachusetts General Hospital.</p> <p>Results</p> <p>We failed to identify an association with the val66 allele in BDNF (OR = 1.23, p = 0.36), the COMT-l allele (OR = 1.27, p = 0.1), or the HTTLPR short allele (OR = 0.87, p = 0.38).</p> <p>Conclusion</p> <p>Our study suggests that the markers examined thus far in <it>COMT </it>and <it>SLC6A4 </it>are not associated with pediatric bipolar disorder and that if the val66met marker in <it>BDNF </it>is associated with pediatric bipolar disorder the magnitude of the association is much smaller than first reported.</p

    Working Together May Be Better: Activation of Reward Centers during a Cooperative Maze Task

    Get PDF
    Humans use theory of mind when predicting the thoughts and feelings and actions of others. There is accumulating evidence that cooperation with a computerized game correlates with a unique pattern of brain activation. To investigate the neural correlates of cooperation in real-time we conducted an fMRI hyperscanning study. We hypothesized that real-time cooperation to complete a maze task, using a blind-driving paradigm, would activate substrates implicated in theory of mind. We also hypothesized that cooperation would activate neural reward centers more than when participants completed the maze themselves. Of interest and in support of our hypothesis we found left caudate and putamen activation when participants worked together to complete the maze. This suggests that cooperation during task completion is inherently rewarding. This finding represents one of the first discoveries of a proximate neural mechanism for group based interactions in real-time, which indirectly supports the social brain hypothesis

    Nanoparticle vesicle encoding for imaging and tracking cell populations.

    Get PDF
    For phenotypic behavior to be understood in the context of cell lineage and local environment, properties of individual cells must be measured relative to population-wide traits. However, the inability to accurately identify, track and measure thousands of single cells via high-throughput microscopy has impeded dynamic studies of cell populations. We demonstrate unique labeling of cells, driven by the heterogeneous random uptake of fluorescent nanoparticles of different emission colors. By sequentially exposing a cell population to different particles, we generated a large number of unique digital codes, which corresponded to the cell-specific number of nanoparticle-loaded vesicles and were visible within a given fluorescence channel. When three colors are used, the assay can self-generate over 17,000 individual codes identifiable using a typical fluorescence microscope. The color-codes provided immediate visualization of cell identity and allowed us to track human cells with a success rate of 78% across image frames separated by 8 h

    High Refractive Index Silicone Gels for Simultaneous Total Internal Reflection Fluorescence and Traction Force Microscopy of Adherent Cells

    Get PDF
    Substrate rigidity profoundly impacts cellular behaviors such as migration, gene expression, and cell fate. Total Internal Reflection Fluorescence (TIRF) microscopy enables selective visualization of the dynamics of substrate adhesions, vesicle trafficking, and biochemical signaling at the cell-substrate interface. Here we apply high-refractive-index silicone gels to perform TIRF microscopy on substrates with a wide range of physiological elastic moduli and simultaneously measure traction forces exerted by cells on the substrate
    • …
    corecore