387 research outputs found

    Sideband Cooling Micromechanical Motion to the Quantum Ground State

    Full text link
    The advent of laser cooling techniques revolutionized the study of many atomic-scale systems. This has fueled progress towards quantum computers by preparing trapped ions in their motional ground state, and generating new states of matter by achieving Bose-Einstein condensation of atomic vapors. Analogous cooling techniques provide a general and flexible method for preparing macroscopic objects in their motional ground state, bringing the powerful technology of micromechanics into the quantum regime. Cavity opto- or electro-mechanical systems achieve sideband cooling through the strong interaction between light and motion. However, entering the quantum regime, less than a single quantum of motion, has been elusive because sideband cooling has not sufficiently overwhelmed the coupling of mechanical systems to their hot environments. Here, we demonstrate sideband cooling of the motion of a micromechanical oscillator to the quantum ground state. Entering the quantum regime requires a large electromechanical interaction, which is achieved by embedding a micromechanical membrane into a superconducting microwave resonant circuit. In order to verify the cooling of the membrane motion into the quantum regime, we perform a near quantum-limited measurement of the microwave field, resolving this motion a factor of 5.1 from the Heisenberg limit. Furthermore, our device exhibits strong-coupling allowing coherent exchange of microwave photons and mechanical phonons. Simultaneously achieving strong coupling, ground state preparation and efficient measurement sets the stage for rapid advances in the control and detection of non-classical states of motion, possibly even testing quantum theory itself in the unexplored region of larger size and mass.Comment: 13 pages, 7 figure

    Variants of ADRA2A are associated with fasting glucose, blood pressure, body mass index and type 2 diabetes risk: meta-analysis of four prospective studies

    Get PDF
    AIMS/HYPOTHESIS: We quantified the effect of ADRA2A (encoding α-2 adrenergic receptor) variants on metabolic traits and type 2 diabetes risk, as reported in four studies. METHODS: Genotype data for ADRA2A single nucleotide polymorphisms (SNPs) rs553668 and rs10885122 were analysed in >17,000 individuals (1,307 type 2 diabetes cases) with regard to metabolic traits and type 2 diabetes risk. Two studies (n = 9,437), genotyped using the Human Cardiovascular Disease BeadChip, provided 12 additional ADRA2A SNPs. RESULTS: Rs553668 was associated with per allele effects on fasting glucose (0.03 mmol/l, p = 0.016) and type 2 diabetes risk (OR 1.17, 95% CI 1.04-1.31; p = 0.01). No significant association was observed with rs10885122. Of the 12 SNPs, several showed associations with metabolic traits. Overall, after variable selection, rs553668 was associated with type 2 diabetes risk (OR 1.38, 95% CI 1.09-1.73; p = 0.007). rs553668 (per allele difference 0.036 mmol/l, 95% CI 0.008-0.065) and rs17186196 (per allele difference 0.066 mmol/l, 95% CI 0.017-0.115) were independently associated with fasting glucose, and rs17186196 with fasting insulin and HOMA of insulin resistance (4.3%, 95% CI 0.6-8.1 and 4.9%, 95% CI 1.0-9.0, respectively, per allele). Per-allele effects of rs491589 on systolic and diastolic blood pressure were 1.19 mmHg (95% CI 0.43-1.95) and 0.61 mmHg (95% CI 0.11-1.10), respectively, and those of rs36022820 on BMI 0.58 kg/m(2) (95% CI 0.15-1.02). CONCLUSIONS/INTERPRETATION: Multiple ADRA2A SNPs are associated with metabolic traits, blood pressure and type 2 diabetes risk. The α-2 adrenergic receptor should be revisited as a therapeutic target for reduction of the adverse consequences of metabolic trait disorders and type 2 diabetes

    Substrate protein folds while it is bound to the ATP-independent chaperone Spy

    Get PDF
    Chaperones assist the folding of many proteins in the cell. While the most well studied chaperones use cycles of ATP binding and hydrolysis to assist protein folding, a number of chaperones have been identified that promote protein folding in the absence of highenergy cofactors. Precisely how ATP-independent chaperones accomplish this feat is unclear. Here we have characterized the kinetic mechanism of substrate folding by the small, ATP-independent chaperone, Spy. Spy rapidly associates with its substrate, Immunity protein 7 (Im7), eliminating its potential for aggregation. Remarkably, Spy then allows Im7 to fully fold into its native state while remaining bound to the surface of the chaperone. These results establish a potentially widespread mechanism whereby ATP-independent chaperones can assist in protein refolding. They also provide compelling evidence that substrate proteins can fold while continuously bound to a chaperone

    Replication and Characterization of Association between ABO SNPs and Red Blood Cell Traits by Meta-Analysis in Europeans.

    Get PDF
    Red blood cell (RBC) traits are routinely measured in clinical practice as important markers of health. Deviations from the physiological ranges are usually a sign of disease, although variation between healthy individuals also occurs, at least partly due to genetic factors. Recent large scale genetic studies identified loci associated with one or more of these traits; further characterization of known loci and identification of new loci is necessary to better understand their role in health and disease and to identify potential molecular mechanisms. We performed meta-analysis of Metabochip association results for six RBC traits-hemoglobin concentration (Hb), hematocrit (Hct), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular volume (MCV) and red blood cell count (RCC)-in 11 093 Europeans from seven studies of the UCL-LSHTM-Edinburgh-Bristol (UCLEB) Consortium. We identified 394 non-overlapping SNPs in five loci at genome-wide significance: 6p22.1-6p21.33 (with HFE among others), 6q23.2 (with HBS1L among others), 6q23.3 (contains no genes), 9q34.3 (only ABO gene) and 22q13.1 (with TMPRSS6 among others), replicating previous findings of association with RBC traits at these loci and extending them by imputation to 1000 Genomes. We further characterized associations between ABO SNPs and three traits: hemoglobin, hematocrit and red blood cell count, replicating them in an independent cohort. Conditional analyses indicated the independent association of each of these traits with ABO SNPs and a role for blood group O in mediating the association. The 15 most significant RBC-associated ABO SNPs were also associated with five cardiometabolic traits, with discordance in the direction of effect between groups of traits, suggesting that ABO may act through more than one mechanism to influence cardiometabolic risk.British Heart Foundation (Grant ID: RG/10/12/28456, RG/08/013/25942, RG/13/16/30528, RG/98002, RG/07/008/23674); Medical Research Council (Grant ID: G0000934, G0500877, MC_UU_12019/1, K013351); Wellcome Trust (Grant ID: 068545/Z/02, 097451/Z/11/Z); European Commission Framework Programme 6 (Grant ID: 018996); French Ministry of Research; Department of Health Policy Research Programme (England); Chief Scientist Office of Scotland (Grant ID: CZB/4/672, CZQ/1/38); National Institute on Ageing (NIA) (Grant ID: AG1764406S1, 5RO1AG13196); Pfizer plc (Unrestricted Investigator Led Grant); Diabetes UK (Clinical Research Fellowship 10/0003985); Stroke Association; National Heart Lung and Blood Institute (5RO1HL036310); Agency for Health Care Policy Research (HS06516); John D. and Catherine T. MacArthur Foundation Research Networks on Successful Midlife Development and Socio-economic Status and Health; Swiss National Science Foundation (33CSCO-122661); GlaxoSmithKline. Faculty of Biology and Medicine of Lausanne,Switzerland.This is the final version of the article. It first appeared from Public Library of Science (PLOS) via http://dx.doi.org/10.1371/journal.pone.015691

    Plasma urate concentration and risk of coronary heart disease: a Mendelian randomisation analysis.

    Get PDF
    BACKGROUND: Increased circulating plasma urate concentration is associated with an increased risk of coronary heart disease, but the extent of any causative effect of urate on risk of coronary heart disease is still unclear. In this study, we aimed to clarify any causal role of urate on coronary heart disease risk using Mendelian randomisation analysis. METHODS: We first did a fixed-effects meta-analysis of the observational association of plasma urate and risk of coronary heart disease. We then used a conventional Mendelian randomisation approach to investigate the causal relevance using a genetic instrument based on 31 urate-associated single nucleotide polymorphisms (SNPs). To account for potential pleiotropic associations of certain SNPs with risk factors other than urate, we additionally did both a multivariable Mendelian randomisation analysis, in which the genetic associations of SNPs with systolic and diastolic blood pressure, HDL cholesterol, and triglycerides were included as covariates, and an Egger Mendelian randomisation (MR-Egger) analysis to estimate a causal effect accounting for unmeasured pleiotropy. FINDINGS: In the meta-analysis of 17 prospective observational studies (166 486 individuals; 9784 coronary heart disease events) a 1 SD higher urate concentration was associated with an odds ratio (OR) for coronary heart disease of 1·07 (95% CI 1·04-1·10). The corresponding OR estimates from the conventional, multivariable adjusted, and Egger Mendelian randomisation analysis (58 studies; 198 598 individuals; 65 877 events) were 1·18 (95% CI 1·08-1·29), 1·10 (1·00-1·22), and 1·05 (0·92-1·20), respectively, per 1 SD increment in plasma urate. INTERPRETATION: Conventional and multivariate Mendelian randomisation analysis implicates a causal role for urate in the development of coronary heart disease, but these estimates might be inflated by hidden pleiotropy. Egger Mendelian randomisation analysis, which accounts for pleiotropy but has less statistical power, suggests there might be no causal effect. These results might help investigators to determine the priority of trials of urate lowering for the prevention of coronary heart disease compared with other potential interventions. FUNDING: UK National Institute for Health Research, British Heart Foundation, and UK Medical Research Council

    Challenge clusters facing LCA in environmental decision-making—what we can learn from biofuels

    Get PDF
    Purpose Bioenergy is increasingly used to help meet greenhouse gas (GHG) and renewable energy targets. However, bioenergy’s sustainability has been questioned, resulting in increasing use of life cycle assessment (LCA). Bioenergy systems are global and complex, and market forces can result in significant changes, relevant to LCA and policy. The goal of this paper is to illustrate the complexities associated with LCA, with particular focus on bioenergy and associated policy development, so that its use can more effectively inform policymakers. Methods The review is based on the results from a series of workshops focused on bioenergy life cycle assessment. Expert submissions were compiled and categorized within the first two workshops. Over 100 issues emerged. Accounting for redundancies and close similarities in the list, this reduced to around 60 challenges, many of which are deeply interrelated. Some of these issues were then explored further at a policyfacing workshop in London, UK. The authors applied a rigorous approach to categorize the challenges identified to be at the intersection of biofuels/bioenergy LCA and policy. Results and discussion The credibility of LCA is core to its use in policy. Even LCAs that comply with ISO standards and policy and regulatory instruments leave a great deal of scope for interpretation and flexibility. Within the bioenergy sector, this has led to frustration and at times a lack of obvious direction. This paper identifies the main challenge clusters: overarching issues, application and practice and value and ethical judgments. Many of these are reflective of the transition from application of LCA to assess individual products or systems to the wider approach that is becoming more common. Uncertainty in impact assessment strongly influences planning and compliance due to challenges in assigning accountability, and communicating the inherent complexity and uncertainty within bioenergy is becoming of greater importance. Conclusions The emergence of LCA in bioenergy governance is particularly significant because other sectors are likely to transition to similar governance models. LCA is being stretched to accommodate complex and broad policy-relevant questions, seeking to incorporate externalities that have major implications for long-term sustainability. As policy increasingly relies on LCA, the strains placed on the methodology are becoming both clearer and impedimentary. The implications for energy policy, and in particular bioenergy, are large

    Heterogeneous patterns of tissue injury in NARP syndrome

    Get PDF
    Point mutations at m.8993T>C and m.8993T>G of the mtDNA ATPase 6 gene cause the neurogenic weakness, ataxia and retinitis pigmentosa (NARP) syndrome, a mitochondrial disorder characterized by retinal, central and peripheral neurodegeneration. We performed detailed neurological, neuropsychological and ophthalmological phenotyping of a mother and four daughters with NARP syndrome from the mtDNA m.8993T>C ATPase 6 mutation, including 3-T brain MRI, spectral domain optical coherence tomography (SD-OCT), adaptive optics scanning laser ophthalmoscopy (AOSLO), electromyography and nerve conduction studies (EMG-NCS) and formal neuropsychological testing. The degree of mutant heteroplasmy for the m.8993T>C mutation was evaluated by real-time allele refractory mutation system quantitative PCR of mtDNA from hair bulbs (ectoderm) and blood leukocytes (mesoderm). There were marked phenotypic differences between family members, even between individuals with the greatest degrees of ectodermal and mesodermal heteroplasmy. 3-T MRI revealed cerebellar atrophy and cystic and cavitary T2 hyperintensities in the basal ganglia. SD-OCT demonstrated similarly heterogeneous areas of neuronal and axonal loss in inner and outer retinal layers. AOSLO showed increased cone spacing due to photoreceptor loss. EMG-NCS revealed varying degrees of length-dependent sensorimotor axonal polyneuropathy. On formal neuropsychological testing, there were varying deficits in processing speed, visual–spatial functioning and verbal fluency and high rates of severe depression. Many of these cognitive deficits likely localize to cerebellar and/or basal ganglia dysfunction. High-resolution retinal and brain imaging in NARP syndrome revealed analogous patterns of tissue injury characterized by heterogeneous areas of neuronal loss
    corecore