1,601 research outputs found

    Spin-orbit density wave induced hidden topological order in URu2Si2

    Full text link
    The conventional order parameters in quantum matters are often characterized by 'spontaneous' broken symmetries. However, sometimes the broken symmetries may blend with the invariant symmetries to lead to mysterious emergent phases. The heavy fermion metal URu2Si2 is one such example, where the order parameter responsible for a second-order phase transition at Th = 17.5 K has remained a long-standing mystery. Here we propose via ab-initio calculation and effective model that a novel spin-orbit density wave in the f-states is responsible for the hidden-order phase in URu2Si2. The staggered spin-orbit order 'spontaneous' breaks rotational, and translational symmetries while time-reversal symmetry remains intact. Thus it is immune to pressure, but can be destroyed by magnetic field even at T = 0 K, that means at a quantum critical point. We compute topological index of the order parameter to show that the hidden order is topologically invariant. Finally, some verifiable predictions are presented.Comment: (v2) Substantially modified from v1, more calculation and comparison with experiments are include

    Assessment of Left Ventricular Geometrical Patterns and Function among Hypertensive Patients at a Tertiary Hospital, Northern Tanzania.

    Get PDF
    With hypertension, the cardiovascular system changes to adapt to the varying neuro-humoral and hemodynamic changes and this may lead to the development of different left ventricular geometric patterns, each carrying a different risk profile for major adverse cardiovascular events. Using a consecutive sampling technique, a cross-sectional, prospective, hospital based study was done and two hundred and twenty seven (227) hypertensive patients were studied. The distribution of different abnormal LV geometrical patterns was 19.8%, 28.2%, 22% for concentric remodelling, concentric hypertrophy and eccentric hypertrophy respectively. With echocardiographic criteria, the proportion of patients with left ventricular hypertrophy (LVH) was higher when left ventricular mass (LVM) was indexed to height(2.7) than to body surface area (70.0% vs. 52.9%). Duration of hypertension markedly influenced the type of LV geometry with normal LV geometry predominating in early hypertension and abnormal geometrical patterns predominating in late hypertension. The left ventricular fractional shortening decreased with duration of hypertension and was common in patients with eccentric hypertrophy. Age of the patient, systolic blood pressure, duration of hypertension and body mass index were found to be independent predictors left ventricular hypertrophy. About 70% of hypertensive patients had abnormal geometry existing in different patterns. Eccentric hypertrophy had more of clinical and echocardiographic features suggestive of reduced left ventricular systolic function. Hypertensive patients should be recognized as a heterogeneous population and therefore stratifying them into their respective LV geometrical patterns is useful as way of assessing their risk profile as well as instituting appropriate management

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Epistasis between FLG and IL4R genes on the risk of allergic sensitization: results from two population-based birth cohort studies

    Get PDF
    Immune-specifc genes as well as genes responsible for the formation and integrity of the epidermal barrier have been implicated in the pathogeneses of allergic sensitization. This study sought to determine whether an epistatic efect (gene-gene interaction) between genetic variants within interleukin 4 receptor (IL4R) and flaggrin (FLG) genes predispose to the development of allergic sensitization. Data from two birth cohort studies were analyzed, namely the Isle of Wight (IOW; n=1,456) and the Manchester Asthma and Allergy Study (MAAS; n=1,058). In the IOW study, one interaction term (IL4R rs3024676×FLG variants) showed statistical signifcance (interaction term: P=0.003). To illustrate the observed epistasis, stratifed analyses were performed, which showed that FLG variants were associated with allergic sensitization only among IL4R rs3024676 homozygotes (OR, 1.97; 95% CI, 1.27–3.05; P=0.003). In contrast, FLG variants efect was masked among IL4R rs3024676 heterozygotes (OR, 0.53; 95% CI, 0.22–1.32; P=0.175). Similar results were demonstrated in the MAAS study. Epistasis between immune (IL4R) and skin (FLG) regulatory genes exist in the pathogenesis of allergic sensitization. Hence, genetic susceptibility towards defective epidermal barrier and deviated immune responses could work together in the development of allergic sensitization

    Interleukin-17D and Nrf2 mediate initial innate immune cell recruitment and restrict MCMV infection.

    Get PDF
    Innate immune cells quickly infiltrate the site of pathogen entry and not only stave off infection but also initiate antigen presentation and promote adaptive immunity. The recruitment of innate leukocytes has been well studied in the context of extracellular bacterial and fungal infection but less during viral infections. We have recently shown that the understudied cytokine Interleukin (IL)-17D can mediate neutrophil, natural killer (NK) cell and monocyte infiltration in sterile inflammation and cancer. Herein, we show that early immune cell accumulation at the peritoneal site of infection by mouse cytomegalovirus (MCMV) is mediated by IL-17D. Mice deficient in IL-17D or the transcription factor Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), an inducer of IL-17D, featured an early decreased number of innate immune cells at the point of viral entry and were more susceptible to MCMV infection. Interestingly, we were able to artificially induce innate leukocyte infiltration by applying the Nrf2 activator tert-butylhydroquinone (tBHQ), which rendered mice less susceptible to MCMV infection. Our results implicate the Nrf2/IL-17D axis as a sensor of viral infection and suggest therapeutic benefit in boosting this pathway to promote innate antiviral responses

    Lipidomic analysis of plasma samples from women with polycystic ovary syndrome

    Get PDF
    Abstract Polycystic ovary syndrome (PCOS) is a common disorder affecting between 5 and 18 % of females of reproductive age and can be diagnosed based on a combination of clinical, ultrasound and biochemical features, none of which on its own is diagnostic. A lipidomic approach using liquid chromatography coupled with accurate mass high-resolution mass-spectrometry (LCHRMS) was used to investigate if there were any differences in plasma lipidomic profiles in women with PCOS compared with control women at different stages of menstrual cycle. Plasma samples from 40 women with PCOS and 40 controls aged between 18 and 40 years were analysed in combination with multivariate statistical analyses. Multivariate data analysis (LASSO regression and OPLSDA) of the sample lipidomics datasets showed a weak prediction model for PCOS versus control samples from the follicular and mid-cycle phases of the menstrual cycle, but a stronger model (specificity 85 % and sensitivity 95 %) for PCOS versus the luteal phase menstrual cycle controls. The PCOS vs luteal phase model showed increased levels of plasma triglycerides and sphingomyelins and decreased levels of lysophosphatidylcholines and phosphatidylethanolamines in PCOS women compared with controls. Lipid biomarkers of PCOS were tentatively identified which may be useful in distinguishing PCOS from controls especially when performed during the menstrual cycle luteal phase

    AmrZ is a major determinant of c-di-GMP levels in Pseudomonas fluorescens F113

    Get PDF
    The transcriptional regulator AmrZ is a global regulatory protein conserved within the pseudomonads. AmrZ can act both as a positive and a negative regulator of gene expression, controlling many genes implicated in environmental adaption. Regulated traits include motility, iron homeostasis, exopolysaccharides production and the ability to form biofilms. In Pseudomonas fluorescens F113, an amrZ mutant presents a pleiotropic phenotype, showing increased swimming motility, decreased biofilm formation and very limited ability for competitive colonization of rhizosphere, its natural habitat. It also shows different colony morphology and binding of the dye Congo Red. The amrZ mutant presents severely reduced levels of the messenger molecule cyclic-di-GMP (c-di-GMP), which is consistent with the motility and biofilm formation phenotypes. Most of the genes encoding proteins with diguanylate cyclase (DGCs) or phosphodiesterase (PDEs) domains, implicated in c-di-GMP turnover in this bacterium, appear to be regulated by AmrZ. Phenotypic analysis of eight mutants in genes shown to be directly regulated by AmrZ and encoding c-di-GMP related enzymes, showed that seven of them were altered in motility and/or biofilm formation. The results presented here show that in P. fluorescens, AmrZ determines c-di-GMP levels through the regulation of a complex network of genes encoding DGCs and PDEs
    corecore