79 research outputs found

    GRAF1 deficiency blunts sarcolemmal injury repair and exacerbates cardiac and skeletal muscle pathology in dystrophin-deficient mice

    Get PDF
    Background The plasma membranes of striated muscle cells are particularly susceptible to rupture as they endure significant mechanical stress and strain during muscle contraction, and studies have shown that defects in membrane repair can contribute to the progression of muscular dystrophy. The synaptotagmin-related protein, dysferlin, has been implicated in mediating rapid membrane repair through its ability to direct intracellular vesicles to sites of membrane injury. However, further work is required to identify the precise molecular mechanisms that govern dysferlin targeting and membrane repair. We previously showed that the bin–amphiphysin–Rvs (BAR)–pleckstrin homology (PH) domain containing Rho-GAP GTPase regulator associated with focal adhesion kinase-1 (GRAF1) was dynamically recruited to the tips of fusing myoblasts wherein it promoted membrane merging by facilitating ferlin-dependent capturing of intracellular vesicles. Because acute membrane repair responses involve similar vesicle trafficking complexes/events and because our prior studies in GRAF1-deficient tadpoles revealed a putative role for GRAF1 in maintaining muscle membrane integrity, we postulated that GRAF1 might also play an important role in facilitating dysferlin-dependent plasma membrane repair. Methods We used an in vitro laser-injury model to test whether GRAF1 was necessary for efficient muscle membrane repair. We also generated dystrophin/GRAF1 doubledeficient mice by breeding mdx mice with GRAF1 hypomorphic mice. Evans blue dye uptake and extensive morphometric analyses were used to assess sarcolemmal integrity and related pathologies in cardiac and skeletal muscles isolated from these mice. Results Herein, we show that GRAF1 is dynamically recruited to damaged skeletal and cardiac muscle plasma membranes and that GRAF1-depleted muscle cells have reduced membrane healing abilities. Moreover, we show that dystrophin depletion exacerbated muscle damage in GRAF1-deficient mice and that mice with dystrophin/GRAF1 double deficiency phenocopied the severe muscle pathologies observed in dystrophin/dysferlin-double null mice. Consistent with a model that GRAF1 facilitates dysferlin-dependent membrane patching, we found that GRAF1 associates with and regulates plasma membrane deposition of dysferlin. Conclusions Overall, our work indicates that GRAF1 facilitates dysferlin-dependent membrane repair following acute muscle injury. These findings indicate that GRAF1 might play a role in the phenotypic variation and pathological progression of cardiac and skeletal muscle degeneration in muscular dystrophy patients

    Impact of early life exposures to geohelminth infections on the development of vaccine immunity, allergic sensitization, and allergic inflammatory diseases in children living in tropical Ecuador: the ECUAVIDA birth cohort study.

    Get PDF
    Background Geohelminth infections are highly prevalent infectious diseases of childhood in many regions of the Tropics, and are associated with significant morbidity especially among pre-school and school-age children. There is growing concern that geohelminth infections, particularly exposures occurring during early life in utero through maternal infections or during infancy, may affect vaccine immunogenicity in populations among whom these infections are endemic. Further, the low prevalence of allergic disease in the rural Tropics has been attributed to the immune modulatory effects of these infections and there is concern that widespread use of anthelmintic treatment in high-risk groups may be associated with an increase in the prevalence of allergic diseases. Because the most widely used vaccines are administered during the first year of life and the antecedents of allergic disease are considered to occur in early childhood, the present study has been designed to investigate the impact of early exposures to geohelminths on the development of protective immunity to vaccines, allergic sensitization, and allergic disease. Methods/Design A cohort of 2,403 neonates followed up to 8 years of age. Primary exposures are infections with geohelminth parasites during the last trimester of pregnancy and the first 2 years of life. Primary study outcomes are the development of protective immunity to common childhood vaccines (i.e. rotavirus, Haemophilus influenzae type B, Hepatitis B, tetanus toxoid, and oral poliovirus type 3) during the first 5 years of life, the development of eczema by 3 years of age, the development of allergen skin test reactivity at 5 years of age, and the development of asthma at 5 and 8 years of age. Potential immunological mechanisms by which geohelminth infections may affect the study outcomes will be investigated also. Discussion The study will provide information on the potential effects of early exposures to geohelminths (during pregnancy and the first 2 years of life) on the development of vaccine immunity and allergy. The data will inform an ongoing debate of potential effects of geohelminths on child health and will contribute to policy decisions on new interventions designed to improve vaccine immunogenicity and protect against the development of allergic diseases

    Shared heritability of attention-deficit/hyperactivity disorder and autism spectrum disorder

    Get PDF
    Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are both highly heritable neurodevelopmental disorders. Evidence indicates both disorders co-occur with a high frequency, in 20–50% of children with ADHD meeting criteria for ASD and in 30-80% of ASD children meeting criteria for ADHD. This review will provide an overview on all available studies [family based, twin, candidate gene, linkage, and genome wide association (GWA) studies] shedding light on the role of shared genetic underpinnings of ADHD and ASD. It is concluded that family and twin studies do provide support for the hypothesis that ADHD and ASD originate from partly similar familial/genetic factors. Only a few candidate gene studies, linkage studies and GWA studies have specifically addressed this co-occurrence, pinpointing to some promising pleiotropic genes, loci and single nucleotide polymorphisms (SNPs), but the research field is in urgent need for better designed and powered studies to tackle this complex issue. We propose that future studies examining shared familial etiological factors for ADHD and ASD use a family-based design in which the same phenotypic (ADHD and ASD), candidate endophenotypic, and environmental measurements are obtained from all family members. Multivariate multi-level models are probably best suited for the statistical analysis

    Prioritization of genes driving congenital phenotypes of patients with de novo genomic structural variants

    Get PDF
    Background:Genomic structural variants (SVs) can affect many genes and regulatory elements. Therefore, the molecular mechanisms driving the phenotypes of patients carrying de novo SVs are frequently unknown. Methods:We applied a combination of systematic experimental and bioinformatic methods to improve the molecular diagnosis of 39 patients with multiple congenital abnormalities and/or intellectual disability harboring apparent de novo SVs, most with an inconclusive diagnosis after regular genetic testing. Results: In 7 of these cases (18%), whole-genome sequencing analysis revealed disease-relevant complexities of the SVs missed in routine microarray-based analyses. We developed a computational tool to predict the effects on genes directly affected by SVs and on genes indirectly affected likely due to the changes in chromatin organization and impact on regulatory mechanisms. By combining these functional predictions with extensive phenotype information, candidate driver genes were identified in 16/39 (41%) patients. In 8 cases, evidence was found for the involvement of multiple candidate drivers contributing to different parts of the phenotypes. Subsequently, we applied this computational method to two cohorts containing a total of 379 patients with previously detected and classified de novo SVs and identified candidate driver genes in 189 cases (50%), including 40 cases whose SVs were previously not classified as pathogenic. Pathogenic position effects were predicted in 28% of all studied cases with balanced SVs and in 11% of the cases with copy number variants. Conclusions:These results demonstrate an integrated computational and experimental approach to predict driver genes based on analyses of WGS data with phenotype association and chromatin organization datasets. These analyses nominate new pathogenic loci and have strong potential to improve the molecular diagnosis of patients with de novo SVs

    Nanoscale Metallic Iron for Environmental Remediation: Prospects and Limitations

    Get PDF
    The amendment of the subsurface with nanoscale metallic iron particles (nano-Fe0) has been discussed in the literature as an efficient in situ technology for groundwater remediation. However, the introduction of this technology was controversial and its efficiency has never been univocally established. This unsatisfying situation has motivated this communication whose objective was a comprehensive discussion of the intrinsic reactivity of nano-Fe0 based on the contemporary knowledge on the mechanism of contaminant removal by Fe0 and a mathematical model. It is showed that due to limitations of the mass transfer of nano-Fe0 to contaminants, available concepts cannot explain the success of nano-Fe0 injection for in situ groundwater remediation. It is recommended to test the possibility of introducing nano-Fe0 to initiate the formation of roll-fronts which propagation would induce the reductive transformation of both dissolved and adsorbed contaminants. Within a roll-front, FeII from nano-Fe0 is the reducing agent for contaminants. FeII is recycled by biotic or abiotic FeIII reduction. While the roll-front concept could explain the success of already implemented reaction zones, more research is needed for a science-based recommendation of nano- Fe0 for subsurface treatment by roll-front

    Neurobiology of rodent self-grooming and its value for translational neuroscience

    Get PDF
    Self-grooming is a complex innate behaviour with an evolutionarily conserved sequencing pattern and is one of the most frequently performed behavioural activities in rodents. In this Review, we discuss the neurobiology of rodent self-grooming, and we highlight studies of rodent models of neuropsychiatric disorders-including models of autism spectrum disorder and obsessive compulsive disorder-that have assessed self-grooming phenotypes. We suggest that rodent self-grooming may be a useful measure of repetitive behaviour in such models, and therefore of value to translational psychiatry. Assessment of rodent self-grooming may also be useful for understanding the neural circuits that are involved in complex sequential patterns of action.National Institutes of Health (U.S.) (Grant NS025529)National Institutes of Health (U.S.) (Grant HD028341)National Institutes of Health (U.S.) (Grant MH060379

    Reduced Gamma Oscillations in a Mouse Model of Intellectual Disability: A Role for Impaired Repetitive Neurotransmission?

    Get PDF
    Intellectual disability affects 2-3% of the population; mutations of the X-chromosome are a major cause of moderate to severe cases. The link between the molecular consequences of the mutation and impaired cognitive function remains unclear. Loss of function mutations of oligophrenin-1 (OPHN1) disrupt Rho-GTPase signalling. Here we demonstrate abnormal neurotransmission at CA3 synapses in hippocampal slices from Ophn1-/y mice, resulting from a substantial decrease in the readily releasable pool of vesicles. As a result, synaptic transmission fails at high frequencies required for oscillations associated with cognitive functions. Both spontaneous and KA-induced gamma oscillations were reduced in Ophn1-/y hippocampal slices. Spontaneous oscillations were rapidly rescued by inhibition of the downstream signalling pathway of oligophrenin-1. These findings suggest that the intellectual disability due to mutations of oligophrenin-1 results from a synaptopathy and consequent network malfunction, providing a plausible mechanism for the learning disabilities. Furthermore, they raise the prospect of drug treatments for affected individuals

    Validation of Abnormal Self-Antigens as Targets for Tumor Rejection by CAR T Cells

    No full text
    Aberrant posttranslational modifications of cellular proteins represent a broad repertoire of putative tumor-specific targets. In general, vaccines targeting these aberrant self-antigens have only generated modest immune responses. In contrast, genetically modified T cells that express chimeric antigen receptors (CARs) demonstrate robust responses against associated targets, and have been clinically effective in treating hematologic cancers. However, in solid tumors the full potential of CAR T cell therapy is limited by the availability of cell surface antigens with sufficient cancer-associated expression to which single-chain variable fragments (scFvs) can be designed. Thus, the majority of CAR targets to date have been normal self-antigens on dispensable hematopoietic tissues or overexpressed shared antigens. Here, we validate abnormal self-antigens as targets for tumor rejection through the use of a novel CAR. We targeted the cancer-associated Tn glycoform of MUC1 in a variety of cancers. The anti-Tn-MUC1 CAR demonstrated target-specific cytotoxicity and successfully controlled tumor growth in xenograft models of T cell leukemia and pancreatic cancer. These finding demonstrate the therapeutic efficacy of CAR T cells directed against abnormal self-antigens and the potential for targeting tumor-specific glycoproteins in future cancer immunotherapies

    Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis.

    No full text
    Please help populate SUNScholar with the full text of SU research output. Also - should you need this item urgently, please send us the details and we will try to get hold of the full text as quick possible. E-mail to [email protected]. Thank you.Journal Articles (subsidised)Geneeskunde en GesondheidswetenskappeMolekul�re Biologie & Mensgenetik
    corecore