4,592 research outputs found
A General Reduction Theorem with Applications to Pathwidth and the Complexity of MAX 2-CSP
We prove a general reduction theorem which allows us to extend bounds for certain graph parameters on cubic graphs to bounds for general graphs taking into account the individual vertex degrees. As applications, we give an algorithm for Max 2 -CSP whose complexity matches the algorithm of Scott and Sorkin in the case of d -regular graphs, d=5 , but is otherwise faster. It also improves on the previously fastest known algorithm in terms of the average degree, given by Golovnev and Kutzkov. Also from the general theorem, we derive a bound for the pathwidth of a general graph which equals that of Fomin et al. and Gaspers for graphs of degree at most 6 , but is smaller otherwise, and use this to give an improved exponential-space algorithm for Max 2 -CSP. Finally we use the general result to give a faster algorithm for Max 2 -CSP on claw-free graphs
Extrapolating Monte Carlo Simulations to Infinite Volume: Finite-Size Scaling at ξ/L ≫1
We present a simple and powerful method for extrapolating finite-volume Monte Carlo data to infinite volume, based on finite-size-scaling theory. We discuss carefully its systematic and statistical errors, and we illustrate it using three examples: the two-dimensional three-state Potts antiferromagnet on the square lattice, and the two-dimensional and -models. In favorable cases it is possible to obtain reliable extrapolations (errors of a few percent) even when the correlation length is 1000 times larger than the lattice
Moderate hypothermia within 6 h of birth plus inhaled xenon versus moderate hypothermia alone after birth asphyxia (TOBY-Xe): a proof-of-concept, open-label, randomised controlled trial
Background Moderate cooling after birth asphyxia is associated with substantial reductions in death and disability, but additional therapies might provide further benefit. We assessed whether the addition of xenon gas, a promising novel therapy, after the initiation of hypothermia for birth asphyxia would result in further improvement. Methods Total Body hypothermia plus Xenon (TOBY-Xe) was a proof-of-concept, randomised, open-label, parallel-group trial done at four intensive-care neonatal units in the UK. Eligible infants were 36–43 weeks of gestational age, had signs of moderate to severe encephalopathy and moderately or severely abnormal background activity for at least 30 min or seizures as shown by amplitude-integrated EEG (aEEG), and had one of the following: Apgar score of 5 or less 10 min after birth, continued need for resuscitation 10 min after birth, or acidosis within 1 h of birth. Participants were allocated in a 1:1 ratio by use of a secure web-based computer-generated randomisation sequence within 12 h of birth to cooling to a rectal temperature of 33·5°C for 72 h (standard treatment) or to cooling in combination with 30% inhaled xenon for 24 h started immediately after randomisation. The primary outcomes were reduction in lactate to N-acetyl aspartate ratio in the thalamus and in preserved fractional anisotropy in the posterior limb of the internal capsule, measured with magnetic resonance spectroscopy and MRI, respectively, within 15 days of birth. The investigator assessing these outcomes was masked to allocation. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00934700, and with ISRCTN, as ISRCTN08886155. Findings The study was done from Jan 31, 2012, to Sept 30, 2014. We enrolled 92 infants, 46 of whom were randomly assigned to cooling only and 46 to xenon plus cooling. 37 infants in the cooling only group and 41 in the cooling plus xenon group underwent magnetic resonance assessments and were included in the analysis of the primary outcomes. We noted no significant differences in lactate to N-acetyl aspartate ratio in the thalamus (geometric mean ratio 1·09, 95% CI 0·90 to 1·32) or fractional anisotropy (mean difference −0·01, 95% CI −0·03 to 0·02) in the posterior limb of the internal capsule between the two groups. Nine infants died in the cooling group and 11 in the xenon group. Two adverse events were reported in the xenon group: subcutaneous fat necrosis and transient desaturation during the MRI. No serious adverse events were recorded. Interpretation Administration of xenon within the delayed timeframe used in this trial is feasible and apparently safe, but is unlikely to enhance the neuroprotective effect of cooling after birth asphyxia
Variability in conditioned pain modulation predicts response to NSAID treatment in patients with knee osteoarthritis
Background: Patients with painful knee osteoarthritis (OA) demonstrate hyperalgesia and altered pain-modulatory responses. While some prior work has demonstrated cross-sectional associations between laboratory and clinical pain measures, it is unknown whether individual variability in quantitative sensory testing (QST) responses at baseline can prospectively predict analgesic treatment responses. Method: Patients with knee OA (n = 35) were compared on QST responses to a demographically-matched pain-free control group (n = 39), after which patients completed a month-long treatment study of diclofenac sodium topical gel (1 %), applied up to 4 times daily. Results: OA patients demonstrated reduced pain thresholds at multiple anatomic sites, as well as reduced conditioned pain modulation (CPM) and enhanced temporal summation of pain. The most pain-sensitive patients tended to report the most intense and neuropathic OA pain. Following diclofenac treatment, the knee OA cohort showed a roughly 30 % improvement in pain, regardless of the presence or absence of neuropathic symptoms. Baseline CPM scores, an index of endogenous pain-inhibitory capacity, were prospectively associated with treatment-related changes in clinical pain. Specifically, participants with higher CPM at baseline (i.e., better functioning endogenous pain-inhibitory systems) showed more reduction in pain at the end of treatment (p < .05). Conclusions: These results support prior findings of amplified pain sensitivity and reduced pain-inhibition in OA patients. Moreover, the moderate to strong associations between laboratory-based measures of pain sensitivity and indices of clinical pain highlight the clinical relevance of QST in this sample. Finally, the prospective association between CPM and diclofenac response suggests that QST-based phenotyping may have utility in explaining inter-patient variability in long-term analgesic treatment outcomes. Trial registration: ClinicalTrials.Gov Identifier: NCT01383954. Registered June 22, 2011
The macro-economic effects of health co-benefits associated with climate change mitigation strategies
The UK government has specific targets for greenhouse gas (GHG) emission reduction to
lower the risk of dangerous climate change. Strategies to reduce GHG emissions are
sometimes perceived as expensive and difficult to implement but previous work has
demonstrated significant potential health co-benefits from ‘Active Travel and low carbon
driving’, ‘Housing Insulation/Ventilation’, and ‘Healthy Diet’ scenarios which may be
attractive to policymakers. Here a Computable General Equilibrium model is used to assess
the financial effects of such health co-benefits on the wider economy including changes in
labour force, social security payments and healthcare costs averted. Results suggest that for
all scenarios the financial impacts of the health co-benefits will be positive and increased
active travel in particular is likely to make a substantial contribution, largely due to health
care costs averted.
Strategies to reduce GHG emissions and improve health are likely to result in substantial and
increasing positive contributions to the economy which may offset some potential economic
costs and thereby be seen more favourably in times of economic austerity
A tract-specific approach to assessing white matter in preterm infants.
Diffusion-weighted imaging (DWI) is becoming an increasingly important tool for studying brain development. DWI analyses relying on manually-drawn regions of interest and tractography using manually-placed waypoints are considered to provide the most accurate characterisation of the underlying brain structure. However, these methods are labour-intensive and become impractical for studies with large cohorts and numerous white matter (WM) tracts. Tract-specific analysis (TSA) is an alternative WM analysis method applicable to large-scale studies that offers potential benefits. TSA produces a skeleton representation of WM tracts and projects the group's diffusion data onto the skeleton for statistical analysis. In this work we evaluate the performance of TSA in analysing preterm infant data against results obtained from native space tractography and tract-based spatial statistics. We evaluate TSA's registration accuracy of WM tracts and assess the agreement between native space data and template space data projected onto WM skeletons, in 12 tracts across 48 preterm neonates. We show that TSA registration provides better WM tract alignment than a previous protocol optimised for neonatal spatial normalisation, and that TSA projects FA values that match well with values derived from native space tractography. We apply TSA for the first time to a preterm neonatal population to study the effects of age at scan on WM tracts around term equivalent age. We demonstrate the effects of age at scan on DTI metrics in commissural, projection and association fibres. We demonstrate the potential of TSA for WM analysis and its suitability for infant studies involving multiple tracts
β-pyrophosphate: A potential biomaterial for dental applications
Tooth hypersensitivity is a growing problem affecting both the young and ageing population worldwide. Since an effective and permanent solution is not yet available, we propose a new methodology for the restoration of dental enamel using femtosecond lasers and novel calcium phosphate biomaterials. During this procedure the irradiated mineral transforms into a densified layer of acid resistant iron doped β-pyrophosphate, bonded with the surface of eroded enamel. Our aim therefore is to evaluate this densified mineral as a potential replacement material for dental hard tissue. To this end, we have tested the hardness of β-pyrophosphate pellets (sintered at 1000 °C) and its mineral precursor (brushite), the wear rate during simulated tooth-brushing trials and the cytocompatibility of these minerals in powder form. It was found that the hardness of the β-pyrophosphate pellets is comparable with that of dental enamel and significantly higher than dentine while, the brushing trials prove that the wear rate of β-pyrophosphate is much slower than that of natural enamel. Finally, cytotoxicity and genotoxicity tests suggest that iron doped β-pyrophosphate is cytocompatible and therefore could be used in dental applications. Taken together and with the previously reported results on laser irradiation of these materials we conclude that iron doped β-pyrophosphate may be a promising material for restoring acid eroded and worn enamel
Inspiratory muscle training reduces blood lactate concentration during volitional hyperpnoea
Although reduced blood lactate concentrations ([lac−]B) have been observed during whole-body exercise following inspiratory muscle training (IMT), it remains unknown whether the inspiratory muscles are the source of at least part of this reduction. To investigate this, we tested the hypothesis that IMT would attenuate the increase in [lac−]B caused by mimicking, at rest, the breathing pattern observed during high-intensity exercise. Twenty-two physically active males were matched for 85% maximal exercise minute ventilation (V˙Emax) and divided equally into an IMT or a control group. Prior to and following a 6 week intervention, participants performed 10 min of volitional hyperpnoea at the breathing pattern commensurate with 85% V˙Emax
Multimodal image analysis of clinical influences on preterm brain development.
OBJECTIVE: Premature birth is associated with numerous complex abnormalities of white and gray matter and a high incidence of long-term neurocognitive impairment. An integrated understanding of these abnormalities and their association with clinical events is lacking. The aim of this study was to identify specific patterns of abnormal cerebral development and their antenatal and postnatal antecedents. METHODS: In a prospective cohort of 449 infants (226 male), we performed a multivariate and data-driven analysis combining multiple imaging modalities. Using canonical correlation analysis, we sought separable multimodal imaging markers associated with specific clinical and environmental factors and correlated to neurodevelopmental outcome at 2 years. RESULTS: We found five independent patterns of neuroanatomical variation that related to clinical factors including age, prematurity, sex, intrauterine complications, and postnatal adversity. We also confirmed the association between imaging markers of neuroanatomical abnormality and poor cognitive and motor outcomes at 2 years. INTERPRETATION: This data-driven approach defined novel and clinically relevant imaging markers of cerebral maldevelopment, which offer new insights into the nature of preterm brain injury. Ann Neurol 2017;82:233-246
- …
