-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by University of Dundee Online Publications

N Q

OPEN ACCESS

DUNDEE

University of Dundee

A General Reduction Theorem with Applications to Pathwidth and the Complexity of
MAX 2-CSP

Edwards, Keith; McDermid, Eric

Published in:
Algorithmica

DOI:
10.1007/s00453-014-9883-7

Publication date:
2015

Document Version _
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):
Edwards, K., & McDermid, E. (2015). A General Reduction Theorem with Applications to Pathwidth and the
Complexity of MAX 2-CSP. Algorithmica, 72(4), 940-968. 10.1007/s00453-014-9883-7

General rights

Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

» Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain.
* You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.


https://core.ac.uk/display/30661688?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s00453-014-9883-7
http://discovery.dundee.ac.uk/portal/en/research/a-general-reduction-theorem-with-applications-to-pathwidth-and-the-complexity-of-max-2csp(c1d55881-e676-417d-b89a-43480fd4f770).html

_;\\'\‘R'*l‘/y
N o

OPEN ACCESS

DUNDEE

University of Dundee

A General Reduction Theorem with Applications to Pathwidth and the Complexity of
MAX 2-CSP

Edwards, Keith; McDermid, Eric

Published in:
Algorithmica

DOI:
10.1007/s00453-014-9883-7

Publication date:
2014

Link to publication in Discovery Research Portal

Citation for published version (APA):
Edwards, K., & McDermid, E. (2014). A General Reduction Theorem with Applications to Pathwidth and the
Complexity of MAX 2-CSP. Algorithmica. 10.1007/s00453-014-9883-7

General rights

Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

? Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or
research.

? You may not further distribute the material or use it for any profit-making activity or commercial gain.

? You may freely distribute the URL identifying the publication in the public portal.


http://dx.doi.org/10.1007/s00453-014-9883-7
http://discovery.dundee.ac.uk/portal/en/research/a-general-reduction-theorem-with-applications-to-pathwidth-and-the-complexity-of-max-2csp(c1d55881-e676-417d-b89a-43480fd4f770).html

The final publication is available at Springer via http://dx.doi.org/10.1007/
s00453-014-9883-7

A general reduction theorem with applications to
pathwidth and the complexity of MAX 2-CSP

Keith Edwards
School of Computing
University of Dundee

Dundee, DD1 4HN
U.K.
kjedwards@dundee.ac.uk

Eric McDermid
Austin, TX

U.S.A.
em46170gmail . com

April 29, 2014

Abstract

We prove a general reduction theorem which allows us to extend bounds for
certain graph parameters on cubic graphs to bounds for general graphs taking into
account the individual vertex degrees. As applications, we give an algorithm for Max
2-CSP whose complexity matches the algorithm of Scott and Sorkin in the case of
d-regular graphs, d < 5, but is otherwise faster. It also improves on the previously
fastest known algorithm in terms of the average degree, given by Golovnev and
Kutzkov. Also from the general theorem, we derive a bound for the pathwidth of a
general graph which equals that of Fomin et al. and Gaspers for graphs of degree
at most 6, but is smaller otherwise, and use this to give an improved exponential-
space algorithm for Max 2-CSP. Finally we use the general result to give a faster
algorithm for Max 2-CSP on claw-free graphs.

Keywords: constraint satisfaction problems; Max 2-CSP; treewidth; pathwidth.



1 Introduction

For over 30 years, there has been interest in the design of faster exponential-time algo-
rithms for NP-hard problems. On the one hand, there are a number of problems for which
significant progress has been made. A good example of this is maximum independent set
— the best! algorithm solves this problem in O*(1.2002") time and polynomial space [33].
Many other classical NP-hard combinatorial problems can also be solved much faster than
O*(2™); we refer the reader to the excellent surveys of Woeginger [31, 32| or the book by
Fomin and Kratsch [13] for further examples.

On the other hand, there are a number of cut, colouring, and partition problems, such as
Max Cut, Max 2-Sat, and Max Bisection, for example, that have proven to be tougher nuts
to crack. Currently there is no known polynomial-space algorithm with time complexity
better than O*(2") for any of these problems. Hence, a recent line of research has been
to instead design algorithms for sparse instances of such problems. In this setting, the
algorithms are parameterized by m, the number of edges (or, in the case of Max 2-Sat,
the number of clauses). The time complexities of such algorithms take the form O*(2™/¢),
where c is a constant. Of course, such an algorithm makes an implicit assumption that the
average degree of the graph (or average number of appearances of a variable) is bounded
by 2¢ — otherwise the naive O*(2")-time algorithm is faster.

A standard technique in designing moderately exponential-time algorithms is the branch-
and-reduce paradigm. A branch-and-reduce algorithm uses a set of reduction rules, which
repeatedly transform the instance into a simpler, equivalent instance. Next, when no
reduction rule applies, the algorithm uses a set of branching rules to generate a collection
of instances which are then solved recursively. If one looks back over the history of
exponential time algorithms designed for, say, Max 2-Sat or Max 2-CSP, the successive
improvements in time complexity usually come at the cost of more and more sophisticated
reduction rules, which often also require more and more sophisticated analysis techniques.
Similar reductions are used by various authors [10, 14, 21, 28] to obtain bounds on the
treewidth and pathwidth of a general graph.

1.1 Known results

There has been a long sequence of exponential time algorithms parameterized by m for
problems contained in Max 2-CSP, particularly for the special case Max 2-Sat. Currently
the best polynomial-space algorithm for Max 2-CSP parameterized by m is due to Scott
and Sorkin [28] and Gaspers and Sorkin [15], who describe an algorithm (“Algorithm B”)
with time complexity O*(r'm/100) = O*(ym/>623) (where r is the domain size for each
variable). (Algorithm A was a simpler algorithm which we do not consider here.)

There have also been algorithms parameterized by the average degree d and number of
vertices n. Scott and Sorkin [28] give an algorithm which for graphs of average degree d

2 _ 3
requires time at most O*(T(lf d+1)n). This is improved to O*(T(1 d+1)n) by Golovnev
and Kutzkov [17] (we refer to this as Algorithm D). An earlier version of this paper [16]

!There is also a technical report, due to Robson [26], which makes use of a detailed analysis done by
computer to solve maximum independent set in O*(2:2°") time and exponential space.



claimed bounds similar to ours, but these are not included in the journal paper [17].
Golovnev and Kutzkov [17] also give an algorithm which for very large average degree d

has a smaller exponent of the form (1 — O(22))n.

For treewidth, Scott and Sorkin [28] derive a general upper bound of (13/75+ o(1))m for
a graph with m edges, and Kneis et al. use similar methods to obtain an upper bound of
(13/75 4 o(1))m + O(logn) on the pathwidth of a graph. Fomin et al. [10] show that

pw(G) < %ng + %m + %ng) + %nﬁ +n>7+o(n)

where n; is the number of vertices of degree ¢, and n>7 is the number of vertices of degree
at least 7. A similar bound with the sum extending to degree 17 is given by Gaspers [14],
though in this case the coefficients of the numbers n; are found by computer search and
are not given exactly.

Scott and Sorkin use their bound to give an algorithm (Algorithm C) for Max 2-CSP
requiring time O*(r(3/7+e(1))m) and exponential space.

For Max 2-Sat, the more specific nature of the problem allows additional types of reduction
to be used, allowing somewhat faster algorithms. A series of papers have obtained running
times of O*(r™/¢), with gradually increasing values of ¢, using increasingly sophisticated
sets of reductions: ¢ = 2.879 by Neidermeier and Rossmanith [24], ¢ = 3.448 by Bansal
and Raman [2], ¢ = 4 by Hirsch [20], ¢ = 5 by Gramm et al. [18], ¢ = 5.263 by Scott and
Sorkin [28], ¢ = 5.5 by Kojevnikov and Kulikov [22], ¢ = 5.88 by Kulikov and Kutzkov
[23], ¢ = 6.215 by Raible and Fernau [25], and finally ¢ = 6.321 by Gaspers and Sorkin
[15]. While the earlier algorithms are beaten by the current fastest algorithms for Max
2-CSP, the most recent algorithms for Max 2-Sat have taken advantage of the special
nature of Max 2-Sat to achieve faster running times that, so far at least, have not been
matched for general Max 2-CSP.

For the Max Cut problem, an O*(2(!=2/4") algorithm is given by Della Croce, Kaminski
and Paschos [6].

1.2 Our contribution

As mentioned above, a number of results have used increasingly complex reductions to
obtain upper bounds. These reductions have mostly focussed on vertices of small degree
(usually at most 5 or 6). Also, although this fact may often be obscured by the derivation
of the reductions chosen, the best upper bounds have often used a vertex of maximum
degree with, where possible, a neighbour of lower degree. This means that the case of
regular graphs is a special case, which has been dealt with by various often rather complex
means, or, in some cases, incorrectly.

In this paper we do three key things: (1) Rather than using reduction to prove a bound
for a particular parameter, we prove a general reduction result using a function g, which
takes into account the degree of each vertex. Upper bounds for particular parameters
can then be derived from this in a more or less standard way - we give three examples
of this. We also fully analyse the behaviour of g,. (2) We do not focus on small vertex
degrees, but treat all degrees > 4 the same, using a vertex of maximum degree with (where
possible) a neighbour of lower degree. The introduction (as in [8]) of a small negative

3



term into the upper bound deals with the regular case and allows a fairly straightforward
inductive proof. (3) Our algorithm for Max 2-CSP finds a set whose deletion from the
graph leaves a graph of treewidth 3 rather than a series-parallel graph (treewidth 2). This
allows the introduction of the small negative term in the cubic case, so that the general
theorem can be applied. Our analysis of the function g, gives the improved exponent of

(1- B2 o/d®)n.

We also derive a similar but better bound in the case of claw-free graphs, allowing a faster
algorithm in this case.

Next we consider pathwidth, and use our general theorem to obtain an upper bound on
the pathwidth of a graph in terms of the degrees of its vertices. This allows us to remove
the error terms n>7 or n>1g in the upper bounds of Fomin et al. [10] and Gaspers [14] and
give a sum over all d > 3, with the coefficients explicitly defined.

Scott and Sorkin use a bound on treewidth to give an algorithm for Max 2-CSP with
lower exponential time complexity, but also requiring exponential space. Our improved
bound thus gives faster bounds for the complexity of this algorithm.

Finally we consider whether reducing the constraint graph to a graph of larger, but still
bounded, treewidth, can give still faster polynomial space algorithms for Max 2-CSP.
Using the concept of fragmentability, we are able to give a bound on how much might be
gained by this technique.

2 Preliminaries

All graphs G = (V| E) are considered to be simple. We use standard graph terminology
and notation, hence n = |V| and m = |E|, and the minimum degree of G is 6(G). We
describe the efficiency of an exponential-time algorithm using the standard O* notation,
which suppresses polynomial factors in any parameters.

If X C V(G), we write G — X to mean the graph formed by deleting the vertices in X
(and incident edges) from G. In the case that X = {v}, we will write G — v rather than
G — {v}.

Treewidth and pathwidth

We first give the definition of treewidth and pathwidth (from [3]).

A tree (resp. path) decomposition of a graph G = (V, F) is a pair ({X;li € I},T = (I, F))
where {X;|i € I} is a family of subsets of V', one for each node of T', and T is a tree (resp.
path) such that

1. UiGI XZ = V,
2. for all edges vw € FE, there exists an ¢ € I with v,w € Xj;

3. forall 4,7,k € I, if j is on the path from ¢ to k£ in T, then X; N X C X.



The width of a tree (resp. path) decomposition is max;ey | X;| — 1. The treewidth (resp.
pathwidth) of a graph G is the minimum width over all possible tree (resp. path) decom-
positions of G.

It is well known that trees (with at least one edge) have treewidth 1, and series-parallel
graphs have treewidth at most 2. The pathwidth of these graphs is O(logn).

Max 2-CSP

An instance of the maximum 2-constraint satisfaction problem (Max 2-CSP) consists of a
simple graph G = (V, E), called the constraint graph, a set of colours [r] = {0,1,...,r—1},
for some r > 2, and a constant Sy. Additionally, for each edge and vertex of G' a score
function is supplied, where the score function of an edge uv takes the form S, : [r]> — R,
and the score function of a vertex v is of the form S, : [r] — R. Note that only one score
is defined for a given colouring of each edge wwv, so for colours c¢;,co € [r] we consider
Suv(c1,c2) and Sy, (e, ¢1) to be equivalent names for the same score.

Any colouring 1 of the vertices of G using the set of colours [r] induces a cost which is
the sum of the vertex and edge functions plus Sy:

S@) =S8+ Y Su(@(v) + D Sun(¥(u), 1 (v))

veV uwvel

A candidate solution, or more simply, a solution of a Max 2-CSP instance is any function
Y : V — [r] which assigns a colour to each vertex of G. An optimal solution is a solution
which maximizes S(¢), and the goal of the Max 2-CSP problem is to find an optimal
solution.

The set of problems that lie within Max 2-CSP is quite rich; the reader may be interested
in verifying that Maximum Cut, Maximum Directed Cut, Maximum Independent Set,
Minimum Vertex Cover, and Maximum 2-Sat are all examples of problems that can be
modelled as a Max 2-CSP instance.

3 A general reduction result

We now prove a general reduction theorem. The idea is to reduce graphs until the com-
ponents are of two types, either cubic, or such that deleting a single vertex gives a series-
parallel graph. The theorem allows us to use upper bounds for certain graph parameters
on these two types of graphs to give upper bounds for all graphs.

Note that by a series-parallel graph we mean here a simple graph with no K4-minor or,
equivalently, a graph of treewidth at most 2.

To state the theorem we need to define several functions.



3.1 Definition and properties of function g,

We first define the important function g,, (a generalisation of the function g defined in
8] and the same function in [16]). For o = 1, ¢, the values of these functions, mostly
for small arguments, have appeared in a number of papers [8, 10, 14, 15, 16, 17, 21, 28|,
however no attempt appears to have been made previously to analyse the behaviour of
the function or to generalise the reduction techniques used. The function g, acts as a cost
function applied to the degree of each vertex. The motivation for the definition is roughly
as follows: In a reduction and branching algorithm, it appears that the best results often
arise from deleting a vertex w of maximum degree A with a neighbour v; of lower degree.
This results in a reduction in the total cost of the vertices of at least the sum of (i) g,(A),
the contribution from w itself, (ii) go(A — 1) — go(A —2), the decrease in the contribution
from vy, and (iii) (A — 1)(ga(A) — go(A — 1)), the decrease in the contributions from the
other neighbours of w. Thus the total reduction is Agy(A) — (A —2)ga(A—1) — go (A —2).
The function g, is defined precisely to make this sum 1, which is the cost of deleting a
vertex.

Definition of functions g, and ¢/,
For any n > 2, and a with 0 < « < 1, define the function g,(n) by setting ¢,(2) = 0,
9a(3) = a, and for any n > 4,

nga(n) = (n—2)ga(n — 1) + go(n — 2) + 1.

We extend g, to all real numbers at least 2 by linear interpolation, i.e., if r = n+x, where
n > 2 is an integer, and 0 < z < 1, then we set go(r) = (1 — 2)ga(n) + xga(n + 1).

Also, for any n > 3, define ¢/, (n) = ga(n) — ga(n —1).

Properties of g, and ¢,

We now list the properties of g, and g, which we will use later. We defer proofs of these
properties to the Appendix (Section 8); see Lemmas 8.1 to 8.5.

1. For any integer n > 2,

ga(n) = (4 — 3@)@ + (2 — 3a)

n!

(="

Y (3 —3a)

where A(n) is the alternating factorial function given by

An)=nl—(n—-1)+...—(=1)"- 1.

2. For all real d > 2,
4 —3a

d+1

3. If & <1/2, then g, is non-decreasing, i.e.,

ga(n +1) = ga(n)

ga(d) =1— +O(1/d).

for all integers n > 2.



4. If 1/6 < a < 3/10, then ¢/, is non-increasing, i.e.,
ga(n+1) < g, (n)
for all integers n > 3.
5. If 1/6 < a < 3/10, go(n)/n is strictly decreasing for n > 5.

6. For all n > 4,
1 —ga(n) = (n—1)g,(n) + g,(n —1).

This is just a rearrangement of the defining recurrence.

We list the first few values of gy/4 and g6 (which we will use later in the paper) below:

d |2 3 4 5 6 7 8

1 3 19 131 1009 8651
91/4(d> 0 4 8 40 240 1680 13440

1 1 13 23 359 1553
91/6(d) 0 6 3 30 45 630 2520

For « outside the range [1/6,3/10], the function ¢/, is not monotone, and the reduction
method used below breaks down. It is possible that one could redefine g, in these cases
and prove a similar reduction result, however since all the cases of interest have 1/6 <
a < 3/10, we do not pursue that here.

Definitions of functions f,, [,

We now define the functions which will be used as upper bounds. For any graph G with
minimum degree at least 2, define f,(G) by:

f@) = S gulde)).

veV(G)

Although f,(G) is the main upper bound of interest, the inductive proof relies crucially
on a small negative term, which depends on the minimum degree of each component. If
G has minimum degree at least 3, with connected components Gy, ..., Gy, set

k k

o (G) = fulG) = D gu(8(G)) =D fa(Ga).

i=1 =1

Note that despite the negative term, f, (G) is always strictly positive.



3.2 Reduction

We also need the concept of series-parallel reductions. Let G be a graph, and consider
the following four operations on G:

1. Delete an isolated vertex of G.
2. Delete a vertex of degree 1 (and its incident edge).

3. Let v be a vertex of degree 2 with non-adjacent neighbours x and y; delete v (and
edges vx, vy) and add an edge between x and y.

4. Let v be a vertex of degree 2 with adjacent neighbours; delete v (and incident edges).

Let r(G) be a graph obtained from G by applying operations 1,2, 3,4 above repeatedly
until none is possible (because the graph has minimum degree at least 3 or is empty). It
follows from the definition of the series-parallel property that G is series-parallel if and
only if r(G) is empty. These reductions have been used by many authors, for example
[5, 11, 14, 28]. (The resulting graph r(G) is in fact unique.)

Definition of basic graph

We will say a connected graph of minimum degree at least 3 is basic if either G is cubic
or r(G — v) is empty for some v € V. A graph is basic if every component is basic.

Reduction-deletion order

We will require the following lemma, which says that the order of deleting vertices and
reducing does not change the graph that results.

Lemma 3.1 Let G = (V,E) be a graph, w be a vertex of G, and X be a subset of
V(r(G —w)). Then
r(G— (X U{w})) =r(r(G—w)—X).

Proof. This follows from the results of Kneis et al. [21]. For a subset D of V', they
define a valid reduction sequence to be a sequence of operations, each of which is either
a series-parallel reduction of a vertex not in D, or removal of a vertex in D. They prove
that any two maximal valid reduction sequences produce the same graph.

Let D = X U{w}. Then we have two maximal valid reduction sequences as follows:

(a) remove each element of X U {w} in turn, then apply series-parallel reductions as
long as possible. This gives (G — (X U {w})).

(b) remove w, then apply the sequence of series-parallel reductions which produces
r(G — w). Since every vertex of X is present in 7(G — w), none of these series-
parallel reductions involves a vertex in D, so the sequence is valid. Then remove
each element of X in turn, and apply series-parallel reductions as long as possible.
This gives r(r(G — w) — X).



These two sequences must give the same graph, so (G — (X U{w})) = r(r(G —w) — X).
[

3.3 The main theorem

We now prove the main theorem which allows us to extend results on basic graphs to
general graphs. The essential idea of the theorem is quite simple; we have some graph
parameter p which is (more or less) invariant under series-parallel reduction and satisfies
p(G) < 1+ p(G — w) for any vertex w, and we have bounds of the form f,(G) for the
parameter on basic graphs. We want a bound (also of the form f,(G)) on the parameter
for general graphs.

If the graph is connected and not regular, then we can delete a vertex w of maximum degree
A with at least one neighbour v; of lower degree, and then reduce G — w to obtain G*,
then the value of f, will decrease by at least the sum of (i) g,(A), the contribution from w
itself, (ii) ¢/,(A — 1), the decrease in the contribution from vy, and (iii) (A —1)g,,(A), the
decrease in the contributions from the other neighbours of w. The function g, is defined
precisely to make this sum 1, and by induction p(G —w) = p(G*) < f,(G*) < fo(G) — 1,
so p(G) < p(G —w) +1 < fo(G).

However we also have to deal with the case when the graph is regular. For cubic graphs
this is covered by the bounds for basic graphs. Otherwise, this is addressed by using f, (G)
rather than f,(G) as the upper bound, giving a slightly stronger inductive hypothesis.
However we then have to take care that the inductive step works in all cases, in particular
when w is a cut-vertex or when the minimum degree changes, and much of the proof is
devoted to this.

Theorem 3.2 Let G = (V| E) be a graph with n vertices and minimum degree 6 > 3.
Then there is a set X¢ C V' such that (i) 7(G — X¢) is non-empty and basic, and (ii)
| Xa|+ fL(r(G— Xg)) < fL(G) for any a, 1/6 < o < 3/10.

Proof. We use induction on n, the number of vertices of G. If n < 4, there is nothing to
prove, so assume that n > 4, and the theorem holds for all G with fewer than n vertices.
If G is basic, then set Xg = ). Since |Xg| = 0 and r(G — X¢g) = G, the result follows.
So assume that G is not basic. If G is not connected, then suppose that G has connected
components Gy, ..., Gy, where k > 2. By the inductive hypothesis, for each i there is a
set X¢, such that r(G; — X¢,) is non-empty and basic and such that

[ X, + fo (r(Gi = X)) < fo (Gi)

Let Xg = UL, X¢,. Then it is clear that (G — X¢) = UL, 7(G; — X¢,), so (G — X¢)
is non-empty and basic. Also f; (r(G — X¢)) = S, fo(r(Gi — X¢,)). Thus since
| Xa| =Y, [Xe,|, we have

Xa| + fr (r(G = Xg)) Z | Xe,| + fa (r(Gi = X¢,) <D [ (Gh) = £ (@),

as required.



So we may assume that G is connected and not basic. Let A be the maximum degree of
(G. Since G is not basic, we have A > 3.

Let w be a vertex of maximum degree in GG, chosen so that the degree of its lowest
degree neighbour is as small as possible. Let the neighbours of w be vy, v, ..., vA, Where
dg(v1) < dg(ve) < ... <dg(va). Since G is connected, dg(vy) < A unless G is A-regular.

Delete the vertex w to form the graph G’ = G — w, and let G* be the reduced graph
r(G'). Since we are assuming that G is not basic, G* is not empty.

By the inductive hypothesis, there is a set X+ such that r(G* — X¢g+) is non-empty and
basic and such that

[ Xo-| + [ (n(G" = X)) < [, (G7).
Set X¢ = Xg- U{w}. Now
r(G* — Xg) =7(r(G—w) — Xg+) = r(G — (Xg- U{w})) =r(G — Xg),
by Lemma 3.1. Thus (G — X¢) is non-empty and basic. Also

[ Xal + fo (r(G = X)) =1+ [Xe-| + f5 (n(G" = Xe+)) <1+ [, (GF).

Thus it suffices to show that

L+ [ (G") < [ (G) = fa(G) = 9, (6(G)). (1)
The rest of the proof is devoted to showing this. First note that

1+ o (G7) = 1+ fa(G") — g,(6(G7))
= 14 fo(G') = (fa(G) = [a(G") + ga(6(G7))). (2)

Now

1+fa(Gl> = 1+ Z Jo dgl

veV(G)

= 1+ Z dgl +Zga dG’ Uz

veV(G)\{v1,..., ’UA}

= 14+ Z ga(dg<v)) + Zga(dG(Uz‘) - 1)

veV(G)\{v1,...,va} i=1
A
= 14+ > galde() + > (galde(vi) = 1) = galde(v)))
veV(G") =1
A
= 1+ Z 9a(da(v)) = galda(w)) =D gh(da(v;))
veV (G =1

= 1+ fa(G) - gcx(A) - Zg;(dG(Ui))
A
= falG)+ (A= 1)go(D) +go(A —1) - Zg&(dc(vi)) (3)

10



= fa(G) = (alda(v1)) = ga(A = 1)) = (galda(v2)) — ga (D))
A

= (9alda(vs)) = () (4)

i=3
where to obtain (3) we use property 6 of ¢,, that 1 — g,(A) = (A —1)g/,(A) + ¢, (A —1).

Thus, substituting expression (4) for 1+ f,(G’) in (2), we have

1+ /3 (G) < falG) = (galda(vr)) = go(A = 1)) = (ga(da(v2)) — ga(D))

=D (lda(v) ~ g4(2))
~(falG) = 1a(G) + 4, (3(G))). )

Let

71(G) = galda(vr)) — go(A—1)

72(G) = go(da(ve)) — go(A)

33(G) = D (galda(v:) = ga(A))

i=3
Ji(G) = fa(G') = fo(G") + g, (6(G)).
Note that only j;(G) can be strictly negative, and then only in the case that dg(v;) = A.

Now (5) becomes
L+ [3 (G7) < fa(G) = 51(G) = 52(G) = j3(G) = ja(G).
and recall, from (1), that we need to show that
L+ fo (G7) < [a(G) = ga(0(G)).
Thus it suffices to establish that, in all cases,
J(G) = 51(G) + j2(G) + Js(G) + ja(G) = 94 (5(G)).
To prove this, we first note that if G’ contains a vertex v of degree d > 3, then

J1(G) = fa(G') = [a(G") + ga(0(G)) = go(d).

For either (i) the vertex v is present (perhaps with reduced degree) in G*, so that 6(G*) < d
and so, since g/, is non-increasing, g.,(6(G*)) > g.(d), or (ii) v is in G’ but not in G*,
which implies that fo(G') — fa(G") > ga(der (1)) = ga(d) > gh(d), as required.

If G is A-regular, then dg(v;) = A, and G’ will contain a vertex of degree A — 1, so that
Ja(G) 2 go(A = 1) and j(G) = j1(G) + ja(G) = (9a(da(v1)) — gb(A = 1)) + g (A = 1) =
gh(A) = ¢/, (d(Q)), as required.

Otherwise, we have dg(v1) < A — 1, so that j;(G) > 0. Hence from now on, j;(G) > 0 in
all cases. If G’ contains a vertex v with 6(G) > dg/(v) > 3, then we have j(G) > j4(G) >
Gu(d/(v)) > g1 (3(G)), as required.

11



So suppose that G’ does not contain a vertex v with 6(G) > dg/(v) > 3. Then we must
have §(G) = 3, for if 6(G) > 3, then we can choose a vertex v # w with dg(v) = 6(G),
and then v will have degree 6(G) or 6(G) — 1 in G' and in either case will satisfy 6(G) >
de/(v) > 3, a contradiction. Also, every vertex with dg(v) = 3 must be a neighbour of w,
for otherwise such a vertex would satisty §(G) > dg(v) > 3.

Thus we may assume that 6(G) = 3 and every vertex with dg(v) = 3 is a neighbour of w.
If dg(va) > 3, then vertex va satisfies A — 1 > dgr(va) > 3, s0 ju(G) > ¢, (da(va)) >
gL (A —1). Also dg(v1) =3 so j1(G) = ¢.,(3) — g,,(A — 1), so we have

HG) Z 1(G) + ja(G) 2 ga(3) = galA = 1) + go (A = 1) = g, (3) = g,(0(G))
as required.

The only other possibility is that dg(vi) = dg(v2) = ... = dg(va) = 3. Hence all of
v1,...,0A have degree 2 in G’ and so are removed by the reduction to G*. Thus since we

are assuming that G* is not empty, G’ must have some other vertex v not adjacent to w
in G, so dg/(v) > 3. Then we have

J(G) Z 52(G) + ja(G) = (9a(da(v2)) = 9o (D)) + gi(der (v) = 94,(3) = go(6(G)),

and the result holds. ]

Remarks

(i) Note that the set X is not necessarily unique.
(ii) Although we have proved the existence of X¢ inductively, it is clear that X can be
found by the following algorithm:

Algorithm X

Input: Graph G with minimum degree at least 3.
1: XG — (Z)
2: while G is not basic do
3:  Choose a component GG; which is not basic
4:  Choose a vertex w of maximum degree in G},
if possible with a neighbour of lower degree
5 G—r(G—-w)
6: Xg — Xg U {w}
7: end while
Output: Xg.

4 Faster exponential-time algorithms

In this section we will show how the results of Theorems 4.1-4.3 below allow the con-
struction of efficient algorithms to solve Max 2-CSP. The basic idea is to find a subset
X of the vertices of the constraint graph whose deletion leaves a (large) graph on the

12



remaining vertex set Y which has a simple structure, in this case bounded treewidth.
Next, we enumerate all possible r-colourings of the set X. Each such colouring cx is a
partial solution for G in the sense that only Y remains to be coloured. The next step
involves finding an optimal extension for cx, i.e., an optimal colouring for Y subject to
cx. We give details below.

Consider an instance II of Max 2-CSP with graph G = (V, E), set of colours [r], constant
Sp, and functions 9, for each v € V and S, for each edge uv € E.

Let X C V be a subset of the vertices of G, and let Y = V \ X. Let G(Y) be the
subgraph induced by the set Y of vertices. Also let ¢ : X — [r] be a (not-necessarily
proper) r-colouring of the vertices in X.

We construct an instance II(Y, ¢) of Max 2-CSP on the graph G(Y') as follows:

1. The constant S%/ “ is defined by

Sy =Se+ > Sule@)+ Y Sule(w), c(v)):;

veX weFR(X)
2. for each v € Y, and i € [r]

Sy =S+ D Sl c(w));

weXwwek

3. for each uwv € E(Y), and i, 5 € [r],

Sui (4,5) = Suu(i, ).

Now it is easy to see that for a fixed set Y C V,

g, Sule) = e |+ S s00) + 3 sww(u),w(v))]
' " -l wek
— S + SYC SYc Y
cI)r(li}[(r] wgl:’;’ai([r UEZV ugE (U) )]

_ Y
= CI)I(la)[(] SH(YC) W )

Thus by trying every possible colouring ¢ of X, and solving the corresponding instance
I1(Y, ¢), we can solve II in 7*| times the time taken to solve each sub-instance II(Y,c). If
we can choose Y so that these sub-instances can be solved in polynomial time, then the
instance II can be solved in total time O*(rX1), and polynomial space.

Let W5 be the wheel on 5 vertices, and let ws(G) be the smallest size of a set X C V(G)
such that G — X has no Ws-minor. It is easy to see that for any graph G, we have
ws(G) = ws(r(G)) where r(G) is the reduced graph defined above.

Edwards and Farr [8] prove the following:

13



Theorem 4.1 ([8]) Let G = (V, E) be a connected graph with n vertices and minimum
degree 6 > 3. Then

ws(G) < Z g1/4(d(v)) —9/1/4(5) :f1_/4(G)-

veV(G)

[l

We briefly show how this result can be derived from the general reduction theorem 3.2
above. We first show that for any basic graph G, ws(G) < f,(G). To see this, note that

if G has connected components G1,..., Gy, then ws(G) = S ws(G;) and f14(G) =
Zle fl_/4(Gi), so we may assume that G is connected. If G is cubic, then it was shown
in [8] that ws(G) < (n —1)/4 = f;,(G). Otherwise A(G) > 3 and (G — v) is empty
for some v. Then G — v is series-parallel and so certainly Wi-minor-free, and ws(G) < 1.
But f,(G) = g1/4(4) +491/4(3) — g1 ,4(3) > 1, as required.

Next, by Theorem 3.2, there is a set X such that
[ Xel + f1,(r(G = Xe)) < f1,(G),

and (G — X¢) is basic and non-empty. Then it is clear that w;(G) < | X¢g|+ws(G — Xg),
and since ws(G — X¢g) = ws(r(G — Xg)), we have

w5(G)

IN

| Xa| + ws(G — Xg)

= | X¢|+ws(r(G — Xg))
< | Xg| + fi,(r(G - Xe))
< fiulG),

as required.

As corollaries, we obtain the following.

Theorem 4.2 ([8]) Let G be a graph, and r(G) the reduced graph of G. Then
ws(G) < > gialdec)(v)).

veV (r(Q))

[

Theorem 4.3 ([8]) Let G be a graph with n vertices, of average degree d > 2. Then if
G is connected, or d > 5,

w5(G) < g1ya(d) n.
]

We note that since Wj is planar, the Ws-minor-free induced subgraphs obtained above
have bounded treewidth. In fact since Wj is a minor of each of the four graphs in the
forbidden minor characterisation of treewidth 3 graphs given by Arnborg et al. [1], then
the subgraphs found have treewidth at most 3. It is well-known that Max 2-CSP on graphs
of bounded treewidth can be solved in polynomial time; see for example [29]. Then we
have the following theorem.

14



Theorem 4.4 Let G be a graph, and r(G) the reduced graph of G. Then an instance of
Mazx 2-CSP on graph G can be solved in time

O*(rﬁ(G))
where B(G) = Zve\/(r(G)) 91/4(dr ) (v))-

Proof. We use the following algorithm (Algorithm E). Let IT be an instance of Max 2-CSP,
with constraint graph G. We first find the reduced graph r(G), then, using Algorithm X
and the results of [8], it is easy to find a set X of size at most 5(G) such that G — X has
treewidth at most 3. Then as above, we try all possible colourings of X, and, for each
colouring ¢, solve the instance II(Y, ¢) in polynomial time. Then the algorithm uses time
O*(r'X1) and polynomial space. ]

Although the analysis splits the finding of the set X into two distinct stages, we can
combine these to produce the following:

Algorithm E
Input: II = (G = (V,E),r, Sy, {Su|v € V},{Su,|uv € E}).
: G — T‘(G)
2: X «— 0
3: while some component of G; of G has at least 5 vertices do
4:  Choose a vertex w of maximum degree in Gj,
if possible with a neighbour of lower degree

—_

5 G—r(G—w)

6: X «— XU {w}

7: end while

8 Y — V\X.

9: for each colouring ¢: X — {1,...,r} do
10:  Solve II(Y, ¢)

11: end for

Output: Best solution found

Note that G — X will not necessarily be series-parallel, for example when G = K, (so
X = 0). However G — X will always have treewidth at most 3. We also observe that
in practice better results will be achieved if (a) the algorithm solves the problem on
components separately whenever the graph splits, and (b) reduction stops as soon as
graph of treewidth 3 is obtained. However it is not clear that either of these will lead to
an improvement in the time complexity below.

Theorem 4.5 Let G be a connected graph with n vertices, of average degree d > 2. Then
an instance of Maz 2-CSP on graph G can be solved in time

13/4
O (@ — v (0 4 +O0/ENmy

[

This improves on the previous best exponent of (1 — -2-)n obtained by Golovnev and

d+1
Kutzkov [17] (Algorithm D).

Re-expressing this bound in terms of the number m of edges, we have, since 2m = dn,

15



Theorem 4.6 Let G be a connected graph with m edges, of average degree d > 2. Then
an instance of Max 2-CSP on graph G can be solved in time

O*(r(291/4(d)/d)m).
U]

Since g1/4(d)/d is strictly decreasing for d > 5 (Section 3.1, property 5), it follows that the
maximum value of the fraction 2¢,,4(d)/d occurs when d = 5, when g,4(d) = 19/40 and
50 291/4(d)/d = 19/100. Hence the exponent in this case is the same as that obtained by
Scott and Sorkin [28], but for all other d, it is lower. For example, for a graph of average
degree 10, Scott and Sorkin’s Algorithm B has time bound O*(r%%") and Golovnev and
Kutzkov’s Algorithm D is O*(r®™8")  whereas our Algorithm E is O*(r%7%") approxi-
mately.

There are three main differences between our Algorithm E and the earlier Algorithms B
and D: (i) Algorithm E treats all degrees at least 4 in a uniform way, unlike Algorithm B,
(ii) Algorithm E always picks a vertex of maximum degree with a lower degree neighbour if
possible, unlike algorithm D; (iii) Algorithms B and D essentially find an induced subgraph
(of the constraint graph) which is series-parallel (treewidth 2), whereas Algorithm E finds
an induced subgraph of treewidth at most 3. This allows a (very) slightly smaller number
of deletions in one of the base cases (connected cubic graphs). This in turn allows a slight
strengthening of the inductive hypothesis which enables the induction to proceed.

Our Algorithm E achieves both the best bound in terms of the average degree and the
best bound expressed in terms of edges. We will discuss in Section 5 how much further
improvement might be possible.

We have presented Algorithm E as a two-stage process in which we first find a vertex subset
X whose deletion leaves a graph of treewidth at most 3, and then (for each colouring of
this deleted set) determine the optimum extension to the low treewidth subgraph. It
should be clear that it is also possible to implement essentially the same algorithm in the
manner used by a number of earlier algorithms, in which we alternately delete one of the
vertices in X and then reduce the resulting graph. Each deletion requires a branching of
the algorithm (with one branch for each possible colour of the deleted vertex), while the
reductions simply modify the CSP instance on the remaining graph.

Extension to polynomial 2-CSP

Scott and Sorkin [29] define a wider class of problems called polynomial 2-CSP, and show
that several existing algorithms, including their Algorithm B, can be extended to deal
with these problems. From the remarks above, it is clear that our Algorithm E can be
extended in the same way.

4.1 Max 2-CSP for claw-free graphs

Cheng et al. [4] show that a cubic claw-free graph (i.e., one with no induced K 3 subgraph)
with n vertices can be made planar by deleting at most n/6 vertices. In fact it is easy to

16



see that the resulting graph also has treewidth at most 3 (though the paper only claims
treewidth at most 4). Furthermore, the bound of n/6 derives from an algorithm in which
deletion of a vertex always results in the reduction of at least five further vertices. However
the last of these deletions is unnecessary, as when n < 6 the graph already has treewidth
at most 3 (and is planar). It follows that a graph of treewidth at most 3 can be obtained
from a connected cubic claw-free graph by deleting at most (n — 1)/6 of its vertices.

Let t5(G) be the smallest size of a set X C V(@) such that G— X has treewidth at most 3.
Then we have the following theorem:

Theorem 4.7 Let G = (V, E) be a claw-free graph with n vertices and minimum degree
6 > 3. Then

15(G) < f174(G).

Proof. We first show that for any basic claw-free graph G, t3(G) < ff/G(G). To see
this, note that if G has connected components G,...,Gy, then t3(G) = Zle t3(G;)
and f)4(G) = Zle fi/6(Gi), so we may assume that G is connected. If G is cubic,
then it follows from the results of Cheng et al. above that t5(G) < (n —1)/6 = f, 4(G).

Otherwise A(G) > 3 and (G — v) is empty for some v. Then G — v is series-parallel and
tw(G —v) <2, s0 tw(G) < 3. Hence t5(G) =0 < [, 4(G).

Next, by Theorem 3.2, there is a set X such that
’XGl + ff/ﬁ(r(G - XG)) < ff/ﬁ(G)a

and r(G — X¢) is basic and non-empty. Also, since G is claw-free, it is easy to see that
r(G — Xg) is also. Thus t3(r(G — X¢)) < f)4(r(G — X)) from above. Then it is clear
that t3(G) < |X¢g| + t3(G — X¢), and t3(G — X¢g) = t3(r(G — Xg)), so we have

t3(G) < | Xe| +t3(G — Xeg)
|Xg| -+ tg(T(G — Xg))
< | Xal + fij6(r(G = Xa)
<

fl_/6<G)7

as required.

Remark

An almost identical proof shows that we can obtain a Wg-minor-free graph by deleting
the same number of vertices. Let wg(G) be the smallest size of a set X C V(G) such
that G — X has no Wgs-minor. Then the only change required in order to show that
wes(G) < f15(G) for any claw-free graph is the following: Whereas ¢3(G) = 0 whenever
r(G —v) is empty, this is not necessarily true for wg(G). However we do have wg(G) < 1,
and if n > 6, then f} 4(G) = g1/6(4) + 591/6(3) — g146(3) = 1, as required. If n <5, then
G cannot have a We-minor, so we(G) =0 < f, 4(G).

As before, we have the following corollaries:

17



Theorem 4.8 Let G be a claw-free graph, and r(G) the reduced graph of G. Then

t3(G) < Z G1/6(drc)(v)).

veV(r(Q))

[l

Theorem 4.9 Let G be a claw-free graph with n vertices, of average degree d > 2. Then
if G is connected, or d > 5,

t3(G) < giy6(d) n.

Proof. As for g1, in [8], it can be shown that if G is a graph with n vertices and average
degree at most d, where d > 2, and if (i) G is connected or (ii) d > 5, then we have

fa(r(G)) = Z 9o(dr(c)(v)) < ga(d)n
veV(r(G))
provided 1/6 < o < 3/10, and the result follows. ]

Since the subgraphs obtained have treewidth at most 3 then, as before, instances of Max
2-CSP on these subgraphs can be solved in polynomial time. Thus we have

Theorem 4.10 Let G be a claw-free graph, and r(G) the reduced graph of G. Then an
instance of Maz 2-CSP on graph G can be solved in time

O* (rﬁ (@) ) 7

where 3(G) = 3 ey (r(ay 91/6(drc) (V) [
We also have

Theorem 4.11 Let G be a connected claw-free graph of average degree d > 2, with n
vertices and m edges. Then an instance of Max 2-CSP on graph G can be solved in time

7/2
O*<7ﬂg1/6(d)n) _ O*(,r,(le/G(d)/d)m) _ O*(’I’(l_ F/1+O(1/d3))n)'

[l

We know that g1/6(d)/d is strictly decreasing for all d > 5 (by property 5 of Section 3.1).
By inspection of the values for small d we find that the maximum of 2g,/4(d)/d again
occurs when d = 5. We have gy,6(5) = 13/30 so 2g1/6(5)/5 = 13/75. Thus in the worst
case, instances of Max 2-CSP on claw-free graphs can be solved in time O*(r(13/7™) and
polynomial space.

18



5 Pathwidth

Scott and Sorkin [28] derive a general upper bound of (13/75 + o(1))m on the treewidth
of a graph with m edges and use this to give a further algorithm (C) for Max 2-CSP
with improved time complexity of O*(r(13/7+e()m) "hut also requiring exponential space.
Kneis et al. use similar methods to obtain an upper bound of (13/75 4 o(1))m + O(log n)
on the pathwidth of a graph. Fomin et al. [10] show that

pw(G) < gns + 3n4 + 5515 + 2206 + nx7 + o(n) = 22:3 g1/6(d)ng + n>7 + o(n),

where n; is the number of vertices of degree 7, and n>7 is the number of vertices of degree
at least 7. Gaspers [14] states that this can be extended to a similar bound

17
pw(G) <Y Bang + nz1s + o(n),

d=3

where the coefficients 3, for d € {7,...,17} were found by a computer search. It is clear
from the table of values given that each constant 3, is an approximation to g;/6(d).

We remove the error terms n>7, n>1s and show below that

pw(G) < D guss(d)na + ofn)

d>3

We proceed as follows. Fomin and Hgie [12] showed that a 3-regular graph G with
m edges has pathwidth at most (1/9 + o(1))m + O(logn) = (1/6 + o(1))n + O(logn).
Hence for 3-regular graphs, there is a function 7, with 7(n) = o(n), such that pw(G) <
n/6—1/6+7(n)+O(logn) (the negative term is needed below). We can also assume that
7 is an increasing function of n (otherwise replace 7 with o given by o(n) = max;<, 7(7)).

Then we have the following:

Lemma 5.1 Let G = (V, E) be a graph with n vertices and minimum degree § > 3. Then

pw(G) < > gise(d(v)) + 7(n) + O(logn).
veV(G)
Proof. We will show that pw(G) < f, 5(G) + 7(n) + O(log n).

The proof follows the same general pattern as that for Theorems 4.1 and 4.7 above, but
there are some differences of detail.

We first show that for any basic graph G, we have

pw(G) < fl_/G(G) + 7(n) + O(logn).

For a connected cubic graph G, pw(G) < n/6 —1/6+7(n)+ O(logn) = fl_/G(G) +7(n)+
O(logn) by the result of Fomin and Hgie [12] above (this is where we use the negative
term, since for a cubic graph f(G) =n/6 —1/6). If (G — v) is empty, then G — v is

19



series-parallel and so has pathwidth O(logn), so pw(G) = O(logn) as required. If G is
basic with connected components Gy, ..., Gy, then

pw(G) = maxpw(G;)

< max <f1_/6(Gi) + 7(|V(Gy)]) + O(log |V(G1)D)
< fij6(G) +7(n) + O(logn)

(Note that the fact that we have a maximum rather than a sum here is crucial.)

Now for any graph G with minimum degree at least 3, there is a set X such that
[ Xa| + f1,6(r(G — Xa)) < f16(G)

and r(G — X¢) is basic and non-empty. It follows from the results of [21] that pw(G) <
| X¢| + pw(G — X¢) and that pw(G — X¢) = pw(r(G — X¢)) + O(logn), so we have
pw(G) < |Xg|+pw(G — Xg)
= Xl +pw(r(G — Xg)) + O(logn)
| Xa|+ f16(r(G = Xg)) +7(n) + O(logn)  (from above)

<
< fl_/G(G) + 7(n) + O(log n),

as required.

Corollary 5.2 Let G be a graph, and r(G) be the reduced graph of G. Then

pw(@) < > gueldie)(v) + 7(IV(G)]) + OQog [V(G)]) =Y g16(d)na + o(|V(G)]).

veV(r(G)) d>3

[

For average degree, we obtain the following:

Theorem 5.3 Let G be a graph of average degree d > 2, with n vertices and m edges.
Then if G 1s connected, or d > 5,

pw(G) < (g1/6(d) + 0(1))n = (2g1/6(d)/d + o(1))m = (1 = ZF + O(1/d*)n.

[l

It follows easily from the results of Golovnev and Kutzkov [17] that for each constant
0 < & < 1 there exists a constant d. = O(exp(1/¢)) such that if d. < d < {77, then

pw(G) < (1 — £2%)n for a graph G with n vertices and average degree d. For very large

average degrees this gives a better bound.

The bound for pathwidth from Theorem 5.3 leads immediately to improved upper bounds
for the time complexity of Scott and Sorkin’s Algorithm C (for convenience of comparison
we will call this Algorithm F, but it is really the same algorithm).

20



Theorem 5.4 Let G be a graph, and r(G) the reduced graph of G. Then an instance of
Mazx 2-CSP on graph G can be solved in time

0" ("),

where 3(G) = 3 ,cv(ay 91/6(dric)(v)) + TV (r(G))). [
We also have

Theorem 5.5 Let G be a connected graph with n vertices and m edges, of average degree
d > 2. Then an instance of Max 2-CSP on graph G can be solved in time

7
O*(T(gl/ﬁ( )+o( 1))n) O*( (291/6(d)/d+o( 1))m) O*( /1+O(1/d3)) )

6 Fragmentability and treewidth

We have seen that one approach to obtaining faster algorithms for Max 2-CSP is to
delete vertices from the graph in order to obtain a (preferably large) subgraph of bounded
treewidth. We now show how the concept of fragmentability provides an upper bound on
how much can be gained by this approach.

The concept of fragmentability of a class of graphs was introduced in [7] and surveyed
in [9]. It measures how small a proportion of vertices needs to be removed from graphs
in a class in order to break them into components of bounded size. We begin by recalling
the definition.

Let € € [0,1] and C € N. A graph G is (C, ¢)-fragmentable if there exists X C V(G) such
that | X| < ¢|V(G)| and every component of G — X has at most C vertices. X is here
called the fragmenting set. A class I' of graphs is e-fragmentable if there exists C' € N
such that every G € T is (C, e)-fragmentable. The coefficient of fragmentability of T is

cf(I") = inf{e | I' is e-fragmentable}.

Now consider the problem of removing vertices from a graph to make the treewidth
bounded. We make the following (temporary) definition. Let I' be a class of graphs.
Define ¢ (') by

cw(D) = inf{\ : I, VG € T, 3X C V(G), |X| < AV(G)| and tw(G — X)) < t}.

Thus, informally, ¢, (I") is the smallest proportion of the vertices (actually the infimum)
whose removal from a graph in I' is guaranteed to achieve (some fixed) bounded treewidth.

However it is easy to see that ¢y (I") = ¢f(I'). For suppose first that A > ¢;(I'). Then by
definition of ¢y, there is a constant C' such that for any G € I, there is a set X C V(G)
with | X| < AV(G)|, such that G — X has all components of size at most C' vertices, and

21



hence is of treewidth at most C'— 1. It follows immediately that ¢y, (I') < A, and since A
was an arbitrary number greater than c;(I"), we have ¢y (I") < ¢f(I).

Conversely, suppose that A > ¢ (['). Then for some fixed ¢, given any graph G in I,
we can find a set X C V(G), with |X| < A(V(G)], such that G — X has treewidth
at most t. But graphs of treewidth ¢ have small separators and so have coefficient of
fragmentability 0, and so it follows [7] that cf(I') < A. Again, since A\ was arbitrary, we
have ¢;(I") < (D).

Now let fz be the class of connected graphs with average degree at most d. It was shown
by Haxell et al. [19] (using connected regular claw-free examples) that for integer d > 4

4
1——) if d is even;
_C d+2
Cf<Fd) >
1o M) odd,

(d+1)(d+3)’

Thus from above we know that in order to obtain a graph of bounded treewidth from

a graph in T, we have to delete (in the worst case) roughly a proportion (1 — ﬁ) of
the vertices. This compares with the proportion achieved by the algorithms in Section 4,
which is roughly (1 — %)n (or (1 — %)n for claw-free graphs).

Thus an algorithm which deleted a smaller proportion of the vertices to obtain a graph
of bounded treewidth would give a faster algorithm for Max 2-CSP. This technique will
not be able to do better than replace % by 4, nonetheless that would be a significant
improvement given the difficulty of the problem.

7 Comparisons

We present here a brief comparison of our algorithms E and F with the earlier al-
gorithms B,C of Scott and Sorkin, Algorithm D of Golovnev and Kutzkov and the
exponential-space algorithm (W) of Williams [30], which solves constraint satisfaction
problems in time O*(r“™/3), where w is the matrix multiplication constant (w ~ 2.373),
and remains the fastest exponential space algorithm for larger degrees.

We compare each of the algorithms on graphs of average degree d, with n vertices, and
give below the value of the exponent e(d) such that the complexity of the algorithm is
O*(r¥@n) (ignoring the o(1) term in the exponent for algorithms B and F). In each case we
show the fastest polynomial-space algorithm(s) in bold and the fastest exponential-space
algorithm in italic.

22



e(d) for algorithm

d] B | C | D E F [ W

3 11 0.250 | 0.167 | 0.250 || 0.250 | 0.167 || 0.791
4 11 0.375 | 0.334 | 0400 || 0.375 | 0.333 || 0.791
5 || 0.475 | 0.434 | 0.500 | 0.475 | 0.434 | 0.791
6 || 0.570 | 0.520 | 0.572 || 0.546 | 0.512 || 0.791
7 || 0.665 | 0.607 | 0.625 || 0.601 | 0.570 || 0.791
8 | 0.760 | 0.694 | 0.667 | 0.644 | 0.617 | 0.791
9 | 0.855 | 0.780 | 0.700 | 0.679 | 0.654 | 0.791
10 || 0.950 | 0.867 | 0.728 | 0.708 | 0.685 || 0.791
11 ] 1.045 | 0.954 | 0.750 || 0.732 | 0.711 || 0.791
12 || 1.140 | 1.040 | 0.770 || 0.752 | 0.733 || 0.791
13 ] 1.235 | 1.127 | 0.786 || 0.770 | 0.752 || 0.791
14 | 1.330 | 1.214 | 0.800 || 0.785 | 0.768 || 0.791
15| 1.425 | 1.300 | 0.813 || 0.798 | 0.783 || 0.791
16 || 1.520 | 1.387 | 0.824 | 0.810 | 0.795 || 0.791

Thus our Algorithm E is faster than all other polynomial-space algorithms for d > 5,
and faster than all previous exponential-space algorithms when 6.810 < d < 14.496. The
exponential-space Algorithm F is slightly faster, but still beaten by Williams’ exponential-

space algorithm for d > 15.694.

Expressing the complexity in terms of the number of edges m, we give below, for graphs of
average degree d, the value of the exponent 7(d) such that the complexity of the algorithm

is O*(rn(@m).

n(d) for algorithm
i B[ C|DJE]J]F]W
3 11 0.190 | 0.174 | 0.167 || 0.167 | 0.112 || 0.528
4 11 0.190 | 0.174 | 0.200 || 0.188 | 0.167 || 0.396
5 || 0.190 | 0.174 | 0.200 || 0.190 | 0.174 || 0.317
6 || 0.190 | 0.174 | 0.191 || 0.182 | 0.171 || 0.264
7 1 0.190 | 0.174 | 0.179 || 0.172 | 0.163 || 0.227
8 || 0.190 | 0.174 | 0.167 || 0.161 | 0.155 || 0.198
9 | 0.190 | 0.174 | 0.156 || 0.151 | 0.146 || 0.176
10 | 0.190 | 0.174 | 0.146 | 0.142 | 0.137 || 0.159
11 ] 0.190 | 0.174 | 0.137 | 0.133 | 0.130 || 0.144
12 ]/ 0.190 | 0.174 | 0.129 | 0.126 | 0.123 || 0.132
13 ] 0.190 | 0.174 | 0.121 | 0.119 | 0.116 || 0.122
14 11 0.190 | 0.174 | 0.115 || 0.113 | 0.110 || 0.114
15 ] 0.190 | 0.174 | 0.109 | 0.107 | 0.105 || 0.106
16 | 0.190 | 0.174 | 0.103 | 0.102 | 0.100 || 0.099
8 Appendix

In this section we prove the properties of the functions g, and g/, which are listed in
Section 3.1. First recall the definition of the functions concerned:

23



For any n > 2, and a with 0 < o < 1, define the function g,(n) by setting ¢g,(2) = 0,
9a(3) = a, and for any n > 4,

nga(n) = (n—2)ga(n — 1) + go(n — 2) + 1. (6)

We extend g, to all real numbers at least 2 by linear interpolation, i.e., if r = n+x, where
n > 2 is an integer, and 0 < z < 1, then we set go(r) = (1 — 2)ga(n) + xga(n + 1).

Also, for any n > 3, define ¢, (n) = ga(n) — ga(n —1).

Lemma 8.1 For any integer n > 2,

galn) = (4 — 304)% + (2 - 3a) <_n1!)n —(3—3a)

where A(n) is the alternating factorial function given by

An)=nl—(n—-1)4+...— (=" 1L

Proof. Let h(n) =1 — go(n). Then from the recurrence (6) above we obtain, for n > 4,
n(l—"hn)=n-2)1-hn—1)+1—h(n—2)+1

or

nh(n) = (n—2)h(n —1) 4+ h(n — 2),

from which
nh(n)+h(n—1) = (n—1)h(n — 1) + h(n — 2)

Thus nh(n)+h(n—1) is a constant, K say, for all n > 3. Multiplying through by (n—1)!,
we obtain
nlh(n) + (n—1h(n—1) = K(n —1)!

or (replacing n by n + 1)
(n+ 1)!h(n+1) 4+ nlh(n) = Kn!
for n > 2. Setting j(n) = (n+ 1)!h(n+ 1)/K for n > 1, we obtain
j(m) + (n — 1) = nl
for all n > 2. The alternating factorial function A(n) satisfies
An)+An—1)=n!

so that
j(n) = A(n) = =(G(n = 1) = A(n = 1)).
Hence j(n) — A(n) = C(—1)" for some constant C. Thus

h(n) = (K/nl)j(n — 1) = (K/n)A(n — 1) — (KC/nl)(=1)"

or

ga(n) =1 —(K/nl)(n! — A(n)) + (KC/n!)(—1)".

24



Thus

go(n) = (K/n)A(n) + (KC/nl)(-1)" — (K —1).
Recall that K = (n+1)h(n+ 1)+ h(n), so setting n = 2 gives K = 3(1 —a)+1 =4 —3a.
Also C = A(1) — j(1) =1 —-2h(2)/K,so KC = K —2h(2) =4—-3a —2=2—3a. So
finally,

ga(n) = (4— 3@% L2 304)(;—1!)" — (3-3a)
as required.
]
Lemma 8.2 For all real d > 2,
dald) =1 - 4d_+3f‘ L O(/d).
Proof. We have, for n > 2,
ga(n) = (4-— 305)% + (2 -3a) (—n1!)n — (3—3a)

N R (Z!— 2! — A(n — 3) ”2_30‘)% )

= (a0 /m?)

_ - (4-3q) (% _ m) +O(1/n%)

_ 1—(4{—+3f‘)+(4—3a) (nil —%+ﬁ) +0(1/n?)

= - (471_—+31a> (4= 5a) (n(n “D(nt 1)) +0(/n

= 1- (a_—f’f) +O(1/n%).
The extension to non-integer arguments is straightforward. 0

Lemma 8.3 Ifa < 1/2, then g, is non-decreasing, i.e.,

Ja(n +1) > ga(n)

for all integers n > 2.

Proof. This is proved by induction, exactly as for the function g = gy/4 in [8]. First a
very easy induction shows that g, < 1 for all n. Then we show by induction that for all
n >3,

ga(n —1) < ga(n) < (14 ga(n —1))/2

This is true for n = 3, so suppose it is true for some n. Then firstly,
(n+1)ga(n+1) = (n—1)ga(n) + ga(n — 1) +1 = (n = 1)ga(n) + 2ga(n) = (n+ 1)ga(n),

25



and secondly
(n+1)ga(n+1) = (n = 1)ga(n) + ga(n — 1) + 1 < nga(n) + 1

so that
1 1 ()—I—l
nt1 29Ty

since n > 1 and g,(n) < 1. M

ga(n+1) < ga(n) +

Note that if « > 1/2, g, is not non-decreasing, since g,(4) = (1 + 2a)/4 < a = go(3).

Lemma 8.4 If1/6 < o < 3/10, then g, is non-increasing, i.e.,

go(n+1) < go(n)

for all integers n > 3.

Proof. We have

nga(n) = (n—2)ga(n —1)+ga(n —2) +1,
(n—=1)gan—=1) = (n—=3)ga(n —2) +ga(n —3) +1

from which we obtain
nga(n) = (n—3)ga(n — 1) + go(n - 2).
for n > 5. Then it is easily shown by an induction similar to the one above that
go(n =1) = go(n) = g,(n —1)/3.
for all n > 4. The base case requires that ¢/, (3) > ¢/, (4) > ¢.(3)/3, or a > (1 — 2a) /4 >
a/3, which is true since 1/6 < o < 3/10. ]
Lemma 8.5 If1/6 < o < 3/10, g.(n)/n is strictly decreasing for n > 5.
Proof. First note that g,(6) = (50a 4+ 53)/120 > 1/2. Now go(n+1)/(n+ 1) < ga(n)/n
if and only if ng,(n + 1) < (n 4 1)ga(n). Since
(m+1ga(n+1)=(n—1)ga(n) +galn—1)+1,

we have
nga(n+1)=m—1)ga(n) + ga(n —1) — go(n+ 1) + 1,

S0 nga(n + 1) < (n+ 1)ga(n) if and only if
ga(n—1) —ga(n+1) +1 < 2g4(n),

or
20a(n+1) — g,(n+1) +g,(n) > 1,

which is true since go(n + 1) > ¢,(6) > 1/2 and ¢/, is non-increasing. In fact g,(n)/n
attains its maximum at n = 5 for all « in this range. 0]

26



Acknowledgements

We would like to thank David Wood for reminding us of the connection between pla-
narization and Max 2-CSP, and the anonymous referees for their helpful comments and
for drawing to our attention some recent work which we were unaware of.

References

1]

2]

S. Arnborg, A. Proskurowski and D. G. Corneil, Forbidden minors characterization
of partial 3-trees, Discrete Math. 80 (1990) 1-19.

N. Bansal and V. Raman, Upper bounds for MAXSAT: further improved, in Algo-
rithms and computation (Chennai, 1999), Lecture Notes in Computer Science 1741,
Springer, Berlin, pp. 247-258.

H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theo-
retical Computer Science 209 (1998) 1-45.

C. Cheng, E. McDermid and I. Suzuki, Planarization and Acyclic Colorings of Sub-
cubic Claw-Free Graphs, in: P. Kolman and J. Kratochvil (eds.), Graph-Theoretic
Concepts in Computer Science, WG 2011 (Czech Republic, June 2011), Lecture
Notes in Computer Science 6986, Springer, Berlin, 2011, pp. 107-118.

H. de Fraysseix and P. Ossona de Mendez, A characterization of DFS cotree critical
graphs, in: P. Mutzel, M. Jiinger and S. Leipert (eds.), Graph Drawing 2001 (Vienna,
23-26 Sept. 2001), Lecture Notes in Computer Science 2265, Springer, Berlin, 2002,
pp- 84-95.

F. Della Croce, M. J. Kaminski and V. Th. Paschos, An exact algorithm for MAX-
CUT in sparse graphs, Oper. Res. Lett. 35 (2007), 403-408.

K. J. Edwards and G. E. Farr, Fragmentability of graphs, J. Combin. Theory (Ser.
B) 82 (2001) 30-37.

K. J. Edwards and G. E. Farr, Improved upper bounds for planarization and series-
parallelization of average degree bounded graphs, Electronic Journal of Combina-
torics 19 (2) (2012) #P25.

K. J. Edwards and G. E. Farr, Graph fragmentability, in: L. W. Beineke and R.
J. Wilson (eds.), Topics in Structural Graph Theory, Encyclopedia of Mathematics
and its Applications No. 147, Cambridge University Press, 2013, pp. 203-218. ISBN
978-0-521-80231-4.

F. V. Fomin, S. Gaspers, S. Saurabh and A. A. Stepanov, On Two Techniques of
Combining Branching and Treewidth, Algorithmica 54 (2009) 181-207.

F. V. Fomin, F. Grandoni and D. Kratsch, A measure & conquer approach for the
analysis of exact algorithms, J. ACM 56 (2009) 1-32.

F. V. Fomin and K. Hgie, Pathwidth of cubic graphs and exact algorithms, Inf.
Process. Lett. 97 (2006) 191-196.

27



[13]

[14]

[15]

[16]

[22]

[23]

[26]

[27]

F. V. Fomin and D. Kratsch, Exact Exponential Algorithms. Texts in Theoretical
Computer Science. Springer, 2010. ISBN 978-3-642-16533-7

S. Gaspers, Exponential Time Algorithms: Structures, Measures, and Bounds. VDM
Verlag Dr. Mueller e. K., 2010. ISBN 978-3-639-21825-1
http://www.cse.unsw.edu.au/ sergeg/SergeBookETA2010_screen.pdf

S. Gaspers and G. B. Sorkin, A universally fastest algorithm for Max 2-Sat, Max
2-CSP, and everything in between, J. Comput. System Sci. 78 (2012), 305-335.

A. Golovnev, New upper bounds for MAX-2-SAT and MAX-2-CSP w.r.t. the av-
erage variable degree, in: Parameterized and exact computation, Lecture Notes in
Computer Science, 7112 Springer, Heidelberg, pp. 106-117.

A. Golovnev and K. Kutzkov, New exact algorithms for the 2-constraint satisfaction
problem, Theoret. Comput. Sci. 526 (2014), 18-27.

J. Gramm, E. A. Hirsch, R. Niedermeier and P. Rossmanith, Worst-case upper
bounds for MAX-2-SAT with an application to MAX-CUT, Discrete Appl. Math.
130 (2003) 139-155.

P. Haxell, O. Pikhurko and A. Thomason, Maximum acyclic and fragmented sets in
regular graphs, J. Graph Theory 57 (2008) 149-156.

E. A. Hirsch, A new algorithm for MAX-2-SAT, in: STACS 2000 (Lille), Lecture
Notes in Computer Science 1770, Springer, Berlin, 2000, pp. 65-73.

J. Kneis, D. Molle, S. Richter and P. Rossmanith, A bound on the pathwidth of sparse
graphs with applications to exact algorithms, SIAM Journal on Discrete Mathematics
23 (2009) 407-427.

A. Kojevnikov and A. S. Kulikov, A new approach to proving upper bounds for
MAX-2-SAT, in: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on
Discrete Algorithms 2006, ACM, New York, 2006, pp. 11-17.

A. S. Kulikov, K. Kutzkov, New bounds for MAX-SAT by clause learning, in: Pro-
ceedings of the 2nd International Symposium on Computer Science in Russia (CSR
2007), Lecture Notes in Computer Science 4649, Springer, 2007, pp. 194-204.

R. Niedermeier and P. Rossmanith, New upper bounds for maximum satisfiability,
J. Algorithms 36 (2000), 63-88.

D. Raible and H. Fernau, A new upper bound for Max-2-SAT: a graph-theoretic
approach, in: Mathematical foundations of computer science 2008, Lecture Notes in
Computer Science 5162, Springer, Berlin, 2008, pp. 551-562.

J. M. Robson. Finding a maximum independent set in time O(2"/4). Technical Report
1251-01, LaBRI, Université Bordeaux I, 2001.

A. D. Scott and G. B. Sorkin, Faster algorithms for MAX CUT and MAX CSP, with
polynomial expected time for sparse instances, in: Proc. 7th International Workshop
on Randomization and Approzimation Techniques in Computer Science (RANDOM
2003), Lecture Notes in Computer Science 2764, Springer, 2003, pp. 382-395.

28



28]

[29]

[30]

[31]

[32]

[33]

A. D. Scott and G. B. Sorkin, Linear-programming design and analysis of fast algo-
rithms for Max 2-CSP, Discrete Optimization 4 (2007) 260-287.

A. D. Scott and G. B. Sorkin. Polynomial constraint satisfaction problems, graph
bisection, and the Ising partition function, ACM Trans. Algorithms 5 (2009) Art.
45.

R. Williams, A new algorithm for optimal constraint satisfaction and its implications,
in: J. Diaz et al. (eds.), Proc. 31st International Colloquium on Automata, Languages
and Programming (ICALP) (Turku, Finland, 2004), Lecture Notes in Computer
Science 3142, Springer, 2004, pp. 1227-1237.

G. J. Woeginger, Exact algorithms for NP-hard problems: a survey, in: Combina-
torial optimization—Fureka, you shrink!, Lecture Notes in Computer Science 2570,
Springer, 2003, pp 185-207.

G. J. Woeginger. Open problems around exact algorithms, Discrete Appl. Math. 156
(2008) 397-405.

Mingyu Xiao and Hiroshi Nagamochi, Exact Algorithms for Maximum Independent
Set, in: L. Cai, S.-W. Cheng, and T.-W. Lam (eds.), ISAAC2013, Lecture Notes in
Computer Science 8283, Springer, 2013, pp. 328-338.

29



