105 research outputs found

    The Gene Expression Analysis of Blood Reveals S100A11 and AQP9 as Potential Biomarkers of Infective Endocarditis

    Get PDF
    BACKGROUND: The diagnostic and prognostic assessments of infective endocarditis (IE) are challenging. To investigate the host response during IE and to identify potential biomarkers, we determined the circulating gene expression profile using whole genome microarray analysis. METHODS AND RESULTS: A transcriptomic case-control study was performed on blood samples from patients with native valve IE (n = 39), excluded IE after an initial suspicion (n = 10) at patient's admission, and age-matched healthy controls (n = 10). Whole genome microarray analysis showed that patients with IE exhibited a specific transcriptional program with a predominance of gene categories associated with cell activation as well as innate immune and inflammatory responses. Quantitative real-time RT-PCR performed on a selection of highly modulated genes showed that the expression of the gene encoding S100 calcium binding protein A11 (S100A11) was significantly increased in patients with IE in comparison with controls (P<0.001) and patients with excluded IE (P<0.05). Interestingly, the upregulated expression of the S100A11 gene was more pronounced in staphylococcal IE than in streptococcal IE (P<0.01). These results were confirmed by serum concentrations of the S100A11 protein. Finally, we showed that in patients with IE, the upregulation of the aquaporin-9 gene (AQP9) was significantly associated with the occurrence of acute heart failure (P = 0.02). CONCLUSIONS: Using transcriptional signatures of blood samples, we identified S100A11 as a potential diagnostic marker of IE, and AQP9 as a potential prognostic factor

    High inorganic phosphate intake promotes tumorigenesis at early stages in a mouse model of lung cancer

    Full text link
    © 2015 Lee et al. Inorganic phosphate (Pi) is required by all living organisms for the development of organs such as bone, muscle, brain, and lungs, regulating the expression of several critical genes as well as signal transduction. However, little is known about the effects of prolonged dietary Pi consumption on lung cancer progression. This study investigated the effects of a highphosphate diet (HPD) in a mouse model of adenocarcinoma. K-rasLA1 mice were fed a normal diet (0.3% Pi) or an HPD (1% Pi) for 1, 2, or 4 months. Mice were then sacrificed and subjected to inductively coupled plasma mass/optical emission spectrometry and laser ablation inductively coupled plasma mass-spectrometry analyses, western blot analysis, histopathological, immunohistochemical, and immunocytochemical analyses to evaluate tumor formation and progression (including cell proliferation, angiogenesis, and apoptosis), changes in ion levels and metabolism, autophagy, epithelial-to-mesenchymal transition, and protein translation in the lungs. An HPD accelerated tumorigenesis, as evidenced by increased adenoma and adenocarcinoma rates as well as tumor size. However, after 4 months of the HPD, cell proliferation was arrested, and marked increases in liver and lung ion levels and in energy production via the tricarboxylic acid cycle in the liver were observed, which were accompanied by increased autophagy and decreased angiogenesis and apoptosis. These results indicate that an HPD initially promotes but later inhibits lung cancer progression because of metabolic adaptation leading to tumor cell quiescence. Moreover, the results suggest that carefully regulated Pi consumption are effective in lung cancer prevention

    A Temporal -omic Study of Propionibacterium freudenreichii CIRM-BIA1T Adaptation Strategies in Conditions Mimicking Cheese Ripening in the Cold

    Get PDF
    Propionibacterium freudenreichii is used as a ripening culture in Swiss cheese manufacture. It grows when cheeses are ripened in a warm room (about 24°C). Cheeses with an acceptable eye formation level are transferred to a cold room (about 4°C), inducing a marked slowdown of propionic fermentation, but P. freudenreichii remains active in the cold. To investigate the P. freudenreichii strategies of adaptation and survival in the cold, we performed the first global gene expression profile for this species. The time-course transcriptomic response of P. freudenreichii CIRM-BIA1T strain was analyzed at five times of incubation, during growth at 30°C then for 9 days at 4°C, under conditions preventing nutrient starvation. Gene expression was also confirmed by RT-qPCR for 28 genes. In addition, proteomic experiments were carried out and the main metabolites were quantified. Microarray analysis revealed that 565 genes (25% of the protein-coding sequences of P. freudenreichii genome) were differentially expressed during transition from 30°C to 4°C (P<0.05 and |fold change|>1). At 4°C, a general slowing down was observed for genes implicated in the cell machinery. On the contrary, P. freudenreichii CIRM-BIA1T strain over-expressed genes involved in lactate, alanine and serine conversion to pyruvate, in gluconeogenesis, and in glycogen synthesis. Interestingly, the expression of different genes involved in the formation of important cheese flavor compounds, remained unchanged at 4°C. This could explain the contribution of P. freudenreichii to cheese ripening even in the cold. In conclusion, P. freudenreichii remains metabolically active at 4°C and induces pathways to maintain its long-term survival

    Sooty Mangabey Genome Sequence Provides Insight into AIDS Resistance in a Natural SIV Host

    Get PDF
    In contrast to infections with human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques, SIV infection of a natural host, sooty mangabeys (Cercocebus atys), is non-pathogenic despite high viraemia. Here we sequenced and assembled the genome of a captive sooty mangabey. We conducted genome-wide comparative analyses of transcript assemblies from C. atys and AIDS-susceptible species, such as humans and macaques, to identify candidates for host genetic factors that influence susceptibility. We identified several immune-related genes in the genome of C. atys that show substantial sequence divergence from macaques or humans. One of these sequence divergences, a C-terminal frameshift in the toll-like receptor-4 (TLR4) gene of C. atys, is associated with a blunted in vitro response to TLR-4 ligands. In addition, we found a major structural change in exons 3-4 of the immune-regulatory protein intercellular adhesion molecule 2 (ICAM-2); expression of this variant leads to reduced cell surface expression of ICAM-2. These data provide a resource for comparative genomic studies of HIV and/or SIV pathogenesis and may help to elucidate the mechanisms by which SIV-infected sooty mangabeys avoid AIDS

    A Galaxy-based bioinformatics pipeline for optimised, streamlined microsatellite development from Illumina next-generation sequencing data

    Get PDF
    © 2016, The Author(s). Microsatellites are useful tools for ecologists and conservationist biologists, but are taxa-specific and traditionally expensive and time-consuming to develop. New methods using next-generation sequencing (NGS) have reduced these problems, but the plethora of software available for processing NGS data may cause confusion and difficulty for researchers new to the field of bioinformatics. We developed a bioinformatics pipeline for microsatellite development from Illumina paired-end sequences, which is packaged in the open-source bioinformatics tool Galaxy. This optimises and streamlines the design of a microsatellite panel and provides a user-friendly graphical user interface. The pipeline utilises existing programs along with our own novel program and wrappers to: quality-filter and trim reads (Trimmomatic); generate sequence quality reports (FastQC); identify potentially-amplifiable microsatellite loci (Pal_finder); design primers (Primer3); assemble pairs of reads to enhance marker amplification success rates (PANDAseq); and filter optimal loci (Pal_filter). The complete pipeline is freely available for use via a pre-configured Galaxy instance, accessible at https://palfinder.ls.manchester.ac.uk

    Biological processes, properties and molecular wiring diagrams of candidate low-penetrance breast cancer susceptibility genes

    Get PDF
    Background: Recent advances in whole-genome association studies (WGASs) for human cancer risk are beginning to provide the part lists of low-penetrance susceptibility genes. However, statistical analysis in these studies is complicated by the vast number of genetic variants examined and the weak effects observed, as a result of which constraints must be incorporated into the study design and analytical approach. In this scenario, biological attributes beyond the adjusted statistics generally receive little attention and, more importantly, the fundamental biological characteristics of low-penetrance susceptibility genes have yet to be determined. Methods: We applied an integrative approach for identifying candidate low-penetrance breast cancer susceptibility genes, their characteristics and molecular networks through the analysis of diverse sources of biological evidence. Results: First, examination of the distribution of Gene Ontology terms in ordered WGAS results identified asymmetrical distribution of Cell Communication and Cell Death processes linked to risk. Second, analysis of 11 different types of molecular or functional relationships in genomic and proteomic data sets defined the 'omic' properties of candidate genes: i/ differential expression in tumors relative to normal tissue; ii/ somatic genomic copy number changes correlating with gene expression levels; iii/ differentially expressed across age at diagnosis; and iv/ expression changes after BRCA1 perturbation. Finally, network modeling of the effects of variants on germline gene expression showed higher connectivity than expected by chance between novel candidates and with known susceptibility genes, which supports functional relationships and provides mechanistic hypotheses of risk. Conclusion: This study proposes that cell communication and cell death are major biological processes perturbed in risk of breast cancer conferred by low-penetrance variants, and defines the common omic properties, molecular interactions and possible functional effects of candidate genes and proteins

    Temporal Analysis of the Honey Bee Microbiome Reveals Four Novel Viruses and Seasonal Prevalence of Known Viruses, Nosema, and Crithidia

    Get PDF
    Honey bees (Apis mellifera) play a critical role in global food production as pollinators of numerous crops. Recently, honey bee populations in the United States, Canada, and Europe have suffered an unexplained increase in annual losses due to a phenomenon known as Colony Collapse Disorder (CCD). Epidemiological analysis of CCD is confounded by a relative dearth of bee pathogen field studies. To identify what constitutes an abnormal pathophysiological condition in a honey bee colony, it is critical to have characterized the spectrum of exogenous infectious agents in healthy hives over time. We conducted a prospective study of a large scale migratory bee keeping operation using high-frequency sampling paired with comprehensive molecular detection methods, including a custom microarray, qPCR, and ultra deep sequencing. We established seasonal incidence and abundance of known viruses, Nosema sp., Crithidia mellificae, and bacteria. Ultra deep sequence analysis further identified four novel RNA viruses, two of which were the most abundant observed components of the honey bee microbiome (∼1011 viruses per honey bee). Our results demonstrate episodic viral incidence and distinct pathogen patterns between summer and winter time-points. Peak infection of common honey bee viruses and Nosema occurred in the summer, whereas levels of the trypanosomatid Crithidia mellificae and Lake Sinai virus 2, a novel virus, peaked in January

    Genetic instability in the tumor microenvironment: a new look at an old neighbor

    Get PDF
    corecore