134 research outputs found

    The 10th Biennial Hatter Cardiovascular Institute workshop: cellular protection—evaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology

    Get PDF
    Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury

    Au Nanoparticles as Interfacial Layer for CdS Quantum Dot-sensitized Solar Cells

    Get PDF
    Quantum dot-sensitized solar cells based on fluorine-doped tin oxide (FTO)/Au/TiO2/CdS photoanode and polysulfide electrolyte are fabricated. Au nanoparticles (NPs) as interfacial layer between FTO and TiO2 layer are dip-coated on FTO surface. The structure, morphology and impedance of the photoanodes and the photovoltaic performance of the cells are investigated. A power conversion efficiency of 1.62% has been obtained for FTO/Au/TiO2/CdS cell, which is about 88% higher than that for FTO/TiO2/CdS cell (0.86%). The easier transport of excited electron and the suppression of charge recombination in the photoanode due to the introduction of Au NP layer should be responsible for the performance enhancement of the cell

    Enhanced Proliferation of Monolayer Cultures of Embryonic Stem (ES) Cell-Derived Cardiomyocytes Following Acute Loss of Retinoblastoma

    Get PDF
    Background: Cardiomyocyte (CM) cell cycle analysis has been impeded because of a reliance on primary neonatal cultures of poorly proliferating cells or chronic transgenic animal models with innate compensatory mechanisms. Methodology/Principal Findings: We describe an in vitro model consisting of monolayer cultures of highly proliferative embryonic stem (ES) cell-derived CM. Following induction with ascorbate and selection with puromycin, early CM cultures are.98 % pure, and at least 85 % of the cells actively proliferate. During the proliferative stage, cells express high levels of E2F3a, B-Myb and phosphorylated forms of retinoblastoma (Rb), but with continued cultivation, cells stop dividing and mature functionally. This developmental transition is characterized by a switch from slow skeletal to cardiac TnI, an increase in binucleation, cardiac calsequestrin and hypophosphorylated Rb, a decrease in E2F3, B-Myb and atrial natriuretic factor, and the establishment of a more negative resting membrane potential. Although previous publications suggested that Rb was not necessary for cell cycle control in heart, we find following acute knockdown of Rb that this factor actively regulates progression through the G1 checkpoint and that its loss promotes proliferation at the expense of CM maturation. Conclusions/Significance: We have established a unique model system for studying cardiac cell cycle progression, and show in contrast to previous reports that Rb actively regulates both cell cycle progression through the G1 checkpoint an

    Genotoxicity and mutagenicity of Echinodorus macrophyllus (chapéu-de-couro) extracts

    Get PDF
    Echinodorus macrophyllus, commonly known as chapéu-de-couro, is a medicinal plant used in folk medicine to treat inflammation and rheumatic diseases. In this work, we used short-term bacterial assays based on the induction of SOS functions to examine the genotoxicity and mutagenicity of an aqueous extract of E. macrophyllus leaves. Whole extract and an ethyl acetate fraction showed similar genotoxicity and caused an ~70-fold increase in lysogenic induction. The extract also gave a positive result in the SOS chromotest with an increase of 12-fold in β-Galactosidase enzymatic units. There was a strong trend towards base substitutions and frameshifts at purine sites in the mutations induced by the extract in Escherichia coli (CC103 and CC104 strains) and Salmonella typhimurium test strains (22-fold increase in histidine revertants in TA98 strain). Since reactive oxygen species may be implicated in aging process and in degenerative diseases, we used antioxidant compounds as catalase, thiourea and dipyridyl in the lysogenic induction test. All this compounds were able to reduce the induction factor observed in the treatment with chapéu-de-couro, thus suggesting that the genotoxicity and mutagenicity were attributable to the production of reactive oxygen species that targeted DNA purines

    Efficient Differentiation of Embryonic Stem Cells into Mesodermal Precursors by BMP, Retinoic Acid and Notch Signalling

    Get PDF
    The ability to direct differentiation of mouse embryonic stem (ES) cells into specific lineages not only provides new insights into the pathways that regulate lineage selection but also has translational applications, for example in drug discovery. We set out to develop a method of differentiating ES cells into mesodermal cells at high efficiency without first having to induce embryoid body formation. ES cells were plated on a feeder layer of PA6 cells, which have membrane-associated stromal-derived inducing activity (SDIA), the molecular basis of which is currently unknown. Stimulation of ES/PA6 co-cultures with Bone Morphogenetic Protein 4 (BMP4) both favoured self-renewal of ES cells and induced differentiation into a Desmin and Nestin double positive cell population. Combined stimulation with BMP4 and all-trans Retinoic Acid (RA) inhibited self-renewal and resulted in 90% of cells expressing Desmin and Nestin. Quantitative reverse transcription-polymerase chain reaction (qPCR) analysis confirmed that the cells were of mesodermal origin and expressed markers of mesenchymal and smooth muscle cells. BMP4 activation of a MAD-homolog (Smad)-dependent reporter in undifferentiated ES cells was attenuated by co-stimulation with RA and co-culture with PA6 cells. The Notch ligand Jag1 was expressed in PA6 cells and inhibition of Notch signalling blocked the differentiation inducing activity of PA6 cells. Our data suggest that mesodermal differentiation is regulated by the level of Smad activity as a result of inputs from BMP4, RA and the Notch pathway

    Evidence That Gene Activation and Silencing during Stem Cell Differentiation Requires a Transcriptionally Paused Intermediate State

    Get PDF
    A surprising portion of both mammalian and Drosophila genomes are transcriptionally paused, undergoing initiation without elongation. We tested the hypothesis that transcriptional pausing is an obligate transition state between definitive activation and silencing as human embryonic stem cells (hESCs) change state from pluripotency to mesoderm. Chromatin immunoprecipitation for trimethyl lysine 4 on histone H3 (ChIP-Chip) was used to analyze transcriptional initiation, and 3′ transcript arrays were used to determine transcript elongation. Pluripotent and mesodermal cells had equivalent fractions of the genome in active and paused transcriptional states (∼48% each), with ∼4% definitively silenced (neither initiation nor elongation). Differentiation to mesoderm changed the transcriptional state of 12% of the genome, with roughly equal numbers of genes moving toward activation or silencing. Interestingly, almost all loci (98–99%) changing transcriptional state do so either by entering or exiting the paused state. A majority of these transitions involve either loss of initiation, as genes specifying alternate lineages are archived, or gain of initiation, in anticipation of future full-length expression. The addition of chromatin dynamics permitted much earlier predictions of final cell fate compared to sole use of conventional transcript arrays. These findings indicate that the paused state may be the major transition state for genes changing expression during differentiation, and implicate control of transcriptional elongation as a key checkpoint in lineage specification

    Efficient and Directive Generation of Two Distinct Endoderm Lineages from Human ESCs and iPSCs by Differentiation Stage-Specific SOX17 Transduction

    Get PDF
    The establishment of methods for directive differentiation from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) is important for regenerative medicine. Although Sry-related HMG box 17 (SOX17) overexpression in ESCs leads to differentiation of either extraembryonic or definitive endoderm cells, respectively, the mechanism of these distinct results remains unknown. Therefore, we utilized a transient adenovirus vector-mediated overexpression system to mimic the SOX17 expression pattern of embryogenesis. The number of alpha-fetoprotein-positive extraembryonic endoderm (ExEn) cells was increased by transient SOX17 transduction in human ESC- and iPSC-derived primitive endoderm cells. In contrast, the number of hematopoietically expressed homeobox (HEX)-positive definitive endoderm (DE) cells, which correspond to the anterior DE in vivo, was increased by transient adenovirus vector-mediated SOX17 expression in human ESC- and iPSC-derived mesendoderm cells. Moreover, hepatocyte-like cells were efficiently generated by sequential transduction of SOX17 and HEX. Our findings show that a stage-specific transduction of SOX17 in the primitive endoderm or mesendoderm promotes directive ExEn or DE differentiation by SOX17 transduction, respectively

    Selective Decrease of Components of the Creatine Kinase System and ATP Synthase Complex in Chronic Chagas Disease Cardiomyopathy

    Get PDF
    Chronic Chagas disease cardiomyopathy (CCC) affects millions in endemic areas and is presenting in growing numbers in the USA and European countries due to migration currents. Clinical progression, length of survival and overall prognosis are significantly worse in CCC patients when compared to patients with dilated cardiomyopathy of non-inflammatory etiology. Impairment of energy metabolism seems to play a role in heart failure due to cardiomyopathies. Herein, we have analyzed energy metabolism enzymes in myocardium samples of CCC patients comparing to other non-inflammatory cardiomyopathies. We found that myocardial tissue from CCC patients displays a significant reduction of both myocardial protein levels of ATP synthase alpha and creatine kinase enzyme activity, in comparison to control heart samples, as well as idiopathic dilated cardiomyopathy and ischemic cardiomyopathy. Our results suggest that CCC myocardium displays a selective energetic deficit, which may play a role in the reduced heart function observed in such patients

    Epicardial cells derived from human embryonic stem cells augment cardiomyocyte-driven heart regeneration.

    Get PDF
    The epicardium and its derivatives provide trophic and structural support for the developing and adult heart. Here we tested the ability of human embryonic stem cell (hESC)-derived epicardium to augment the structure and function of engineered heart tissue in vitro and to improve efficacy of hESC-cardiomyocyte grafts in infarcted athymic rat hearts. Epicardial cells markedly enhanced the contractility, myofibril structure and calcium handling of human engineered heart tissues, while reducing passive stiffness compared with mesenchymal stromal cells. Transplanted epicardial cells formed persistent fibroblast grafts in infarcted hearts. Cotransplantation of hESC-derived epicardial cells and cardiomyocytes doubled graft cardiomyocyte proliferation rates in vivo, resulting in 2.6-fold greater cardiac graft size and simultaneously augmenting graft and host vascularization. Notably, cotransplantation improved systolic function compared with hearts receiving either cardiomyocytes alone, epicardial cells alone or vehicle. The ability of epicardial cells to enhance cardiac graft size and function makes them a promising adjuvant therapeutic for cardiac repair.: This work was supported by the British Heart Foundation (BHF; Grants NH/11/1/28922, G1000847, FS/13/29/30024 and FS/18/46/33663), Oxford-Cambridge Centre for Regenerative Medicine (RM/13/3/30159), the UK Medical Research Council (MRC) and the Cambridge Hospitals National Institute for Health Research Biomedical Research Centre funding (SS), as well as National Institutes of Health Grants P01HL094374, P01GM081619, R01HL12836 and a grant from the Fondation Leducq Transatlantic Network of Excellence (CEM). J.B. was supported by a Cambridge National Institute for Health Research Biomedical Research Centre Cardiovascular Clinical Research Fellowship and subsequently, by a BHF Studentship (Grant FS/13/65/30441). DI received a University of Cambridge Commonwealth Scholarship. LG is supported by BHF Award RM/l3/3/30159 and LPO is funded by a Wellcome Trust Fellowship (203568/Z/16/Z). NF was supported by BHF grants RG/13/14/30314. NL was supported by the Biotechnology and Biological Sciences Research Council (Institute Strategic Programmes BBS/E/B/000C0419 and BBS/E/B/000C0434). SS and MB were supported by the British Heart Foundation Centre for Cardiovascular Research Excellence. Core support was provided by the Wellcome-MRC Cambridge Stem Cell Institute (203151/Z/16/Z), The authors thank Osiris for provision of the primary mesenchymal stem cells (59

    Are we there yet? Australian road safety targets and road traffic crash fatalities

    Get PDF
    Background: Road safety targets are widely used and provide a basis for evaluating progress in road safety outcomes against a quantified goal. In Australia, a reduction in fatalities from road traffic crashes (RTCs) is a public policy objective: a national target of no more than 5.6 fatalities per 100,000 population by 2010 was set in 2001. The purpose of this paper is to examine the progress Australia and its states and territories have made in reducing RTC fatalities, and to estimate when the 2010 target may be reached by the jurisdictions. Methods. Following a descriptive analysis, univariate time-series models estimate past trends in fatality rates over recent decades. Data for differing time periods are analysed and different trend specifications estimated. Preferred models were selected on the basis of statistical criteria and the period covered by the data. The results of preferred regressions are used to determine out-of-sample forecasts of when the national target may be attained by the jurisdictions. Though there are limitations with the time series approach used, inadequate data precluded the estimation of a full causal/structural model. Results: Statistically significant reductions in fatality rates since 1971 were found for all jurisdictions with the national rate decreasing on average, 3% per year since 1992. However the gains have varied across time and space, with percent changes in fatality rates ranging from an 8% increase in New South Wales 1972-1981 to a 46% decrease in Queensland 1982-1991. Based on an estimate of past trends, it is possible that the target set for 2010 may not be reached nationally, until 2016. Unsurprisingly, the analysis indicated a range of outcomes for the respective state/territory jurisdictions though these results should be interpreted with caution due to different assumptions and length of data. Conclusions: Results indicate that while Australia has been successful over recent decades in reducing RTC mortality, an important gap between aspirations and achievements remains. Moreover, unless there are fairly radical ("trend-breaking") changes in the factors that affect the incidence of RTC fatalities, deaths from RTCs are likely to remain above the national target in some areas of Australia, for years to come
    • …
    corecore