2,313 research outputs found

    Sequential occurrence of thrombotic thrombocytopenic purpura, essential thrombocythemia, and idiopathic thrombocytopenic purpura in a 42-year-old African-American woman: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Thrombotic thrombocytopenic purpura and idiopathic thrombocytopenic purpura are two well recognized syndromes that are characterized by low platelet counts. In contrast, essential thrombocythemia is a myeloproliferative disease characterized by abnormally high platelet numbers.</p> <p>The coexistence of thrombotic thrombocytopenic purpura and idiopathic thrombocytopenic purpura in a single patient has been reported in the literature on a few occasions. However, having essential thrombocythemia complicating the picture has never been reported before.</p> <p>Case presentation</p> <p>We present a case where thrombotic thrombocytopenic purpura, essential thrombocythemia, and idiopathic thrombocytopenic purpura were diagnosed in a 42-year-old African-American woman in the space of a few years; we are reporting this case with the aim of drawing attention to this undocumented occurrence, which remains under investigation.</p> <p>Conclusions</p> <p>As the three conditions have different natural histories and require different treatment modalities, it is important to recognize that these diseases may be seen sequentially. This case emphasizes the importance of reviewing peripheral blood smears for evaluation of thrombocytopenia and bone marrow aspirations for diagnosis of thrombocythemia in order to reach an accurate diagnosis and tailor therapy accordingly. Moreover, this case demonstrates the variability and complexity of platelet disorders. This occurrence of three different types of platelet disorders in one patient remains a pure observation on our part; regardless, this does raise the possibility of a common underlying, as yet undiscovered, pathophysiology that could explain the phenomenon.</p

    BSE Case Associated with Prion Protein Gene Mutation

    Get PDF
    Bovine spongiform encephalopathy (BSE) is a transmissible spongiform encephalopathy (TSE) of cattle and was first detected in 1986 in the United Kingdom. It is the most likely cause of variant Creutzfeldt-Jakob disease (CJD) in humans. The origin of BSE remains an enigma. Here we report an H-type BSE case associated with the novel mutation E211K within the prion protein gene (Prnp). Sequence analysis revealed that the animal with H-type BSE was heterozygous at Prnp nucleotides 631 through 633. An identical pathogenic mutation at the homologous codon position (E200K) in the human Prnp has been described as the most common cause of genetic CJD. This finding represents the first report of a confirmed case of BSE with a potential pathogenic mutation within the bovine Prnp gene. A recent epidemiological study revealed that the K211 allele was not detected in 6062 cattle from commercial beef processing plants and 42 cattle breeds, indicating an extremely low prevalence of the E211K variant (less than 1 in 2000) in cattle

    Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron

    Get PDF
    The Standard Model of particle physics is known to be incomplete. Extensions to the Standard Model, such as weak-scale supersymmetry, posit the existence of new particles and interactions that are asymmetric under time reversal (T) and nearly always predict a small yet potentially measurable electron electric dipole moment (EDM), d_e, in the range of 10^(−27) to 10^(−30) e·cm. The EDM is an asymmetric charge distribution along the electron spin (S) that is also asymmetric under T. Using the polar molecule thorium monoxide, we measured d_e = (–2.1±3.7_(stat)±2.5_(syst)) × 10−29 e·cm. This corresponds to an upper limit of ❘d_e❘ < 8.7 × 10^(−29) e·cm with 90% confidence, an order of magnitude improvement in sensitivity relative to the previous best limit. Our result constrains T-violating physics at the TeV energy scale

    30 days wild: development and evaluation of a large-scale nature engagement campaign to improve well-being

    Get PDF
    There is a need to increase people’s engagement with and connection to nature, both for human well-being and the conservation of nature itself. In order to suggest ways for people to engage with nature and create a wider social context to normalise nature engagement, The Wildlife Trusts developed a mass engagement campaign, 30 Days Wild. The campaign asked people to engage with nature every day for a month. 12,400 people signed up for 30 Days Wild via an online sign-up with an estimated 18,500 taking part overall, resulting in an estimated 300,000 engagements with nature by participants. Samples of those taking part were found to have sustained increases in happiness, health, connection to nature and pro-nature behaviours. With the improvement in health being predicted by the improvement in happiness, this relationship was mediated by the change in connection to nature

    Immune Response and Mitochondrial Metabolism Are Commonly Deregulated in DMD and Aging Skeletal Muscle

    Get PDF
    Duchenne Muscular Dystrophy (DMD) is a complex process involving multiple pathways downstream of the primary genetic insult leading to fatal muscle degeneration. Aging muscle is a multifactorial neuromuscular process characterized by impaired muscle regeneration leading to progressive atrophy. We hypothesized that these chronic atrophying situations may share specific myogenic adaptative responses at transcriptional level according to tissue remodeling. Muscle biopsies from four young DMD and four AGED subjects were referred to a group of seven muscle biopsies from young subjects without any neuromuscular disorder and explored through a dedicated expression microarray. We identified 528 differentially expressed genes (out of 2,745 analyzed), of which 328 could be validated by an exhaustive meta-analysis of public microarray datasets referring to DMD and Aging in skeletal muscle. Among the 328 validated co-expressed genes, 50% had the same expression profile in both groups and corresponded to immune/fibrosis responses and mitochondrial metabolism. Generalizing these observed meta-signatures with large compendia of public datasets reinforced our results as they could be also identified in other pathological processes and in diverse physiological conditions. Focusing on the common gene signatures in these two atrophying conditions, we observed enrichment in motifs for candidate transcription factors that may coordinate either the immune/fibrosis responses (ETS1, IRF1, NF1) or the mitochondrial metabolism (ESRRA). Deregulation in their expression could be responsible, at least in part, for the same transcriptome changes initiating the chronic muscle atrophy. This study suggests that distinct pathophysiological processes may share common gene responses and pathways related to specific transcription factors

    Reasoning Under Uncertainty: Towards Collaborative Interactive Machine Learning

    Get PDF
    In this paper, we present the current state-of-the-art of decision making (DM) and machine learning (ML) and bridge the two research domains to create an integrated approach of complex problem solving based on human and computational agents. We present a novel classification of ML, emphasizing the human-in-the-loop in interactive ML (iML) and more specific on collaborative interactive ML (ciML), which we understand as a deep integrated version of iML, where humans and algorithms work hand in hand to solve complex problems. Both humans and computers have specific strengths and weaknesses and integrating humans into machine learning processes might be a very efficient way for tackling problems. This approach bears immense research potential for various domains, e.g., in health informatics or in industrial applications. We outline open questions and name future challenges that have to be addressed by the research community to enable the use of collaborative interactive machine learning for problem solving in a large scale

    Proteolytic shedding of the prion protein via activation of metallopeptidase ADAM10 reduces cellular binding and toxicity of amyloid-β oligomers

    Get PDF
    The cellular prion protein (PrPC) is a key neuronal receptor for amyloid-β oligomers (AβO), mediating their neurotoxicity, which contributes to the neurodegeneration in Alzheimer's disease (AD). Similarly to the amyloid precursor protein (APP), PrPC is proteolytically cleaved from the cell surface by a disintegrin and metalloprotease, ADAM10. We hypothesized that ADAM10-modulated PrPC shedding would alter the cellular binding and cytotoxicity of AβO. Here, we found that in human neuroblastoma cells, activation of ADAM10 with the muscarinic agonist carbachol promotes PrPC shedding and reduces the binding of AβO to the cell surface, which could be blocked with an ADAM10 inhibitor. Conversely, siRNA-mediated ADAM10 knockdown reduced PrPC shedding and increased AβO binding, which was blocked by the PrPC-specific antibody 6D11. The retinoic acid receptor analog acitretin, which up-regulates ADAM10, also promoted PrPC shedding and decreased AβO binding in the neuroblastoma cells and in human induced pluripotent stem cell (iPSC)-derived cortical neurons. Pretreatment with acitretin abolished activation of Fyn kinase and prevented an increase in reactive oxygen species caused by AβO binding to PrPC Besides blocking AβO binding and toxicity, acitretin also increased the non-amyloidogenic processing of APP. However, in the iPSC-derived neurons, Aβ and other amyloidogenic processing products did not exhibit a reciprocal decrease upon acitretin treatment. These results indicate that by promoting the shedding of PrPC in human neurons, ADAM10 activation prevents the binding and cytotoxicity of AβO, revealing a potential therapeutic benefit of ADAM10 activation in AD

    The Assessment of Post-Vasectomy Pain in Mice Using Behaviour and the Mouse Grimace Scale

    Get PDF
    Background: Current behaviour-based pain assessments for laboratory rodents have significant limitations. Assessment of facial expression changes, as a novel means of pain scoring, may overcome some of these limitations. The Mouse Grimace Scale appears to offer a means of assessing post-operative pain in mice that is as effective as manual behavioural-based scoring, without the limitations of such schemes. Effective assessment of post-operative pain is not only critical for animal welfare, but also the validity of science using animal models. Methodology/Principal Findings: This study compared changes in behaviour assessed using both an automated system (‘‘HomeCageScan’’) and using manual analysis with changes in facial expressions assessed using the Mouse Grimace Scale (MGS). Mice (n = 6/group) were assessed before and after surgery (scrotal approach vasectomy) and either received saline, meloxicam or bupivacaine. Both the MGS and manual scoring of pain behaviours identified clear differences between the pre and post surgery periods and between those animals receiving analgesia (20 mg/kg meloxicam or 5 mg/kg bupivacaine) or saline post-operatively. Both of these assessments were highly correlated with those showing high MGS scores also exhibiting high frequencies of pain behaviours. Automated behavioural analysis in contrast was only able to detect differences between the pre and post surgery periods. Conclusions: In conclusion, both the Mouse Grimace Scale and manual scoring of pain behaviours are assessing th

    Inhibition of Expression in Escherichia coli of a Virulence Regulator MglB of Francisella tularensis Using External Guide Sequence Technology

    Get PDF
    External guide sequences (EGSs) have successfully been used to inhibit expression of target genes at the post-transcriptional level in both prokaryotes and eukaryotes. We previously reported that EGS accessible and cleavable sites in the target RNAs can rapidly be identified by screening random EGS (rEGS) libraries. Here the method of screening rEGS libraries and a partial RNase T1 digestion assay were used to identify sites accessible to EGSs in the mRNA of a global virulence regulator MglB from Francisella tularensis, a Gram-negative pathogenic bacterium. Specific EGSs were subsequently designed and their activities in terms of the cleavage of mglB mRNA by RNase P were tested in vitro and in vivo. EGS73, EGS148, and EGS155 in both stem and M1 EGS constructs induced mglB mRNA cleavage in vitro. Expression of stem EGS73 and EGS155 in Escherichia coli resulted in significant reduction of the mglB mRNA level coded for the F. tularensis mglB gene inserted in those cells
    corecore