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The cellular prion protein (PrPC) is a key neuronal receptor
for �-amyloid oligomers (A�O), mediating their neurotoxicity,
which contributes to the neurodegeneration in Alzheimer’s dis-
ease (AD). Similarly to the amyloid precursor protein (APP),
PrPC is proteolytically cleaved from the cell surface by a disin-
tegrin and metalloprotease, ADAM10. We hypothesized that
ADAM10-modulated PrPC shedding would alter the cellular
binding and cytotoxicity of A�O. Here, we found that in human
neuroblastoma cells, activation of ADAM10 with the musca-
rinic agonist carbachol promotes PrPC shedding and reduces
the binding of A�O to the cell surface, which could be blocked
with an ADAM10 inhibitor. Conversely, siRNA-mediated
ADAM10 knockdown reduced PrPC shedding and increased
A�O binding, which was blocked by the PrPC-specific antibody
6D11. The retinoic acid receptor analog acitretin, which up-reg-
ulates ADAM10, also promoted PrPC shedding and decreased
A�O binding in the neuroblastoma cells and in human induced
pluripotent stem cell (iPSC)-derived cortical neurons. Pretreat-
ment with acitretin abolished activation of Fyn kinase and pre-
vented an increase in reactive oxygen species caused by A�O
binding to PrPC. Besides blocking A�O binding and toxicity,
acitretin also increased the nonamyloidogenic processing of
APP. However, in the iPSC-derived neurons, A� and other amy-
loidogenic processing products did not exhibit a reciprocal

decrease upon acitretin treatment. These results indicate that
by promoting the shedding of PrPC in human neurons,
ADAM10 activation prevents the binding and cytotoxicity of
A�O, revealing a potential therapeutic benefit of ADAM10
activation in AD.

Alzheimer’s disease (AD)3 is a progressive, age-associated dis-
order that is characterized by abnormal accumulation of proteina-
cious aggregates in the form of �-amyloid (A�) containing plaques
and neurofibrillary tangles composed of hyperphosphorylated tau
(1, 2). Oligomers of A� (A�Os) appear to be the most neurotoxic
species, binding to receptors on the surface of neurons and trig-
gering a variety of downstream signaling pathways that negatively
impact neuronal function and survival (reviewed in Refs. 3 and 4).
A substantial portion of A�O toxicity in AD is mediated following
the initial interaction with the cellular prion protein (PrPC), which
resides in cholesterol-rich lipid rafts at the neuronal surface (4, 5).
A�O binding to PrPC mediates inhibition of long-term potentia-
tion in hippocampal slices (6) and memory and behavioral impair-
ments in multiple AD mouse models (7, 8). The binding of A�O to
PrPC leads to activation of Fyn kinase, a loss of surface N-methyl-
D-aspartate receptors, and subsequent phosphorylation of tau
(9–11). A�O also cause increases in reactive oxygen species
(ROS), which contribute to the neurodegeneration (reviewed in
Ref. 12).

Given the central role of PrPC in mediating the toxicity of
A�O, targeting PrPC has potential for AD therapy (reviewed in
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Ref. 4). Immunotargeting (e.g. using the anti-PrPC mAb 6D11 to
block the A�O binding site on PrPC) prevented the impairment
in long-term potentiation caused by A�O derived from AD
brain extracts (13, 14) and blocked A� synaptotoxicity follow-
ing peripheral administration (15). Altering the conformation
of A�O, disrupting A�O binding to PrPC, or displacing PrPC

from lipid rafts blocked downstream cellular toxicity (11, 16).
Several of the actions of A�O, including activation of Fyn, den-
dritic spine loss, and tau phosphorylation, are mediated by PrPC

coupling to mGluR5 (17–19), and pharmacological inhibition
or allosteric modulation of mGluR5 reduced pathogenesis in
AD mouse models (20, 21). Another approach has been to tar-
get Fyn directly with a specific inhibitor to rescue the memory
deficits in an AD mouse model (22). These approaches high-
light that targeting PrPC or other components of the A�O-PrPC

signaling complex may have therapeutic potential in AD.
A� peptides are generated when the amyloid precursor

protein (APP) is cleaved by the sequential action of the
�-secretase (�-site APP-cleaving enzyme 1; BACE1) and the
multisubunit �-secretase complex in the amyloidogenic
pathway (23). �-Secretase cleavage of APP also releases the
large soluble ectodomain fragment sAPP�. Alternatively,
APP can be cleaved via the nonamyloidogenic pathway
through the action of the �-secretase, a disintegrin and met-
alloprotease ADAM10, precluding the formation of the A�
peptide and generating an alternative soluble fragment
sAPP� that has neuroprotective and neurotrophic proper-
ties (23). It is generally assumed that there is competition
between the �- and �-secretases for their substrate APP,
resulting in a reciprocal relationship between the amyloido-
genic and nonamyloidogenic APP-processing pathways. In
support of this reciprocal relationship, neuronal overexpres-
sion of ADAM10 in APPV717I transgenic mice increased the
secretion of sAPP� and reduced the formation of A� pep-
tides (24), whereas in human induced pluripotent stem cell
(iPSC)-derived neurons, inhibition of BACE1 reduced sAPP� and
A� and increased sAPP� (25).

The ectodomain shedding of multiple cell surface proteins
can be promoted by a variety of compounds. For example, acti-
vators of protein kinase C and the muscarinic agonist carbachol
promote the shedding of APP (26 –29). The vitamin A analog,
acitretin, promoted the �-secretase cleavage of APP by stimu-
lating the transcription of ADAM10 via interaction with reti-
noic acid–responsive elements within the ADAM10 promoter
(30). As ADAM10 also cleaves and sheds the ectodomain of
PrPC from the cell surface (31–33), we hypothesized that mod-
ulating ADAM10 activity, thereby altering the shedding and
thus the amount of PrPC at the cell surface, would modulate the
binding and toxicity of A�O.

Here, we have used human neuroblastoma cells and iPSC-
derived cortical neurons to show that carbachol and acitretin
promote the shedding of cell surface PrPC through activation of
ADAM10. The resulting reduction of cell surface PrPC leads to
a concomitant reduction in the binding of A�O. Conversely,
siRNA knockdown of ADAM10 resulted in increased cell sur-
face PrPC and a corresponding increase in A�O binding that
could be blocked with the PrPC antibody, 6D11. A�O binding
to PrPC activated Fyn kinase and caused an increase in ROS that

could be blocked by promoting the shedding of PrPC with aci-
tretin. We also report that although acitretin reciprocally mod-
ulated the amyloidogenic and nonamyloidogenic processing of
APP in neuroblastoma cells and rat hippocampal neurons, no
such reciprocal relationship was observed in the human iPSC-
derived neurons.

Results

Promoting the shedding of PrPC decreases the cell surface
binding of A�O

As ADAM10 mediates the shedding of PrPC from the cell
surface (31, 32), we hypothesized that activation of ADAM10
would reduce A�O binding to cells due to shedding of its cell
surface receptor PrPC. Initially, the muscarinic agonist carba-
chol, which increases the shedding of multiple cell surface pro-
teins, including APP, was employed (28). The effect of carba-
chol on PrPC and APP shedding was monitored by detection of
the soluble fragments, sPrPC and sAPP�, respectively, in the
media fraction. Treatment of human SH-SY5Y cells expressing
PrPC with carbachol promoted the shedding of full-length gly-
cosylated PrPC by 1.4-fold and the �-secretase cleavage of APP
by 1.5-fold (Fig. 1, A–C). To establish that carbachol was acting
via activation of ADAM10, the cells were incubated with the
ADAM10-selective inhibitor, GI254023X (34). On its own, the
ADAM10 inhibitor significantly reduced the amount of sPrPC

in the media by 83% (Fig. 1, A and B), consistent with ADAM10
being the major constitutive PrPC sheddase (32). In the pres-
ence of the ADAM10 inhibitor, carbachol failed to cause an
increase in the shedding of PrPC (Fig. 1, A and B), indicating
that carbachol was promoting the shedding of PrPC via activa-
tion of ADAM10. Similar to its effect on the shedding of PrPC,
the ADAM10 inhibitor significantly reduced sAPP� in the
media by 85% and blocked the increase in sAPP� caused by
carbachol (Fig. 1, A and C). Treatment with carbachol and the
GI254023X (GI) inhibitor did not significantly alter ADAM10
expression (Fig. 1D). Consistent with increasing the shedding of
PrPC, carbachol treatment resulted in a decrease in cell surface
expression of PrPC evaluated by ImageStream imaging cytom-
etry (Fig. 1E). This analysis demonstrated a decrease in high-
expressing PrPC cells in a population of cells treated with car-
bachol when compared with the control population. The
decrease in cell surface PrPC was confirmed using immunoflu-
orescence microscopy, where carbachol treatment of the cells
caused a significant decrease (40%) in the amount of PrPC local-
ized to the cell surface (Fig. 1, F and G). A�Os were prepared
and characterized as described previously (11), and their bind-
ing to the cells was monitored by immunofluorescence micros-
copy. Treatment of the cells with carbachol resulted in a signif-
icant decrease (62%) in the amount of A�O bound to the cell
surface (Fig. 1, F and G).

In addition to promoting the shedding of the entire ectodo-
main of PrPC through cleavage near the site of glycosylphos-
phatidylinositol (GPI) anchor attachment (31), ADAM10 has
also been reported to cleave PrPC within the middle of the ect-
odomain (sometimes referred to as �-cleavage) (35). The
�-cleavage of PrPC releases an N-terminal fragment, termed
N1, and leaves a C-terminal fragment, C1, tethered to the mem-
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brane via the GPI anchor. To establish whether carbachol also
promoted the cleavage of PrPC within its ectodomain, samples
were deglycosylated so that the C1 fragment could be detected
and distinguished from unglycosylated full-length PrPC. There
was no change in the ratio of full-length PrPC to C1 fragment
when cells were incubated with carbachol (Fig. 1, H and I),
indicating that carbachol reduces A�O binding by promoting
the shedding of full-length PrPC and not by promoting cleavage
within its ectodomain.

Knockdown of ADAM10 increases A� oligomer binding in a
PrP-dependent manner

To confirm that ADAM10 was responsible for altering A�O
binding through modulating the cell surface level of PrPC,
ADAM10 was knocked down using siRNA in the SH-SY5Y cells
expressing PrPC. For these experiments, we used both a
SMARTpool siRNA containing four target siRNAs (Dharma-
con) shown in Fig. 2 and a single, independent siRNA (Ambion)
shown in Fig. 3. In the ADAM10 siRNA-treated cells, there was
a significant reduction in the pro and mature forms of
ADAM10 of 69% (Fig. 2, A and B) and 68% (Fig. 3, A and B) in
Dharmacon-treated and Ambion siRNA–treated cells, respec-
tively. Following ADAM10 siRNA knockdown, the amount of
sPrPC was significantly reduced by 48% (Fig. 2, A and C) and by
30% (Fig. 3, A and C), and the amount of sAPP� was also signif-
icantly reduced, by 67% (Fig. 2, A and D) and 85% (Fig. 3, A and
D). ADAM10 siRNA caused a 2.2-fold (Fig. 2, E and F) and a
1.3-fold (Fig. 3, E and F) increase in cell surface PrPC relative
to nontargeting siRNA as assessed by immunofluorescence
microscopy, and the binding of A�O to the cells was
increased by 1.7-fold (Fig. 2, E and G) and 1.6-fold (Fig. 3, E
and G) in the presence of ADAM10 siRNA relative to non-
targeting siRNA. To establish whether this increased bind-
ing of A�O was due to the increased cell surface level of
PrPC, cells were preincubated with the PrPC antibody, 6D11,
which blocks the A�O binding site on PrPC (6). Incubation of
the cells with the 6D11 antibody had no significant effect on
the amount of PrPC at the cell surface (Figs. 2 (E and F) and 3
(E and F)). However, the 6D11 antibody significantly re-
duced A�� binding to the cells by 77% (Fig. 2, E and G) and
by 60% (Fig. 3, E and G). In the presence of the 6D11 anti-
body, siRNA knockdown of ADAM10 failed to increase A�O
binding (Figs. 2 (E and G) and 3 (E and G)), indicating that
the increased binding of A�O upon ADAM10 knockdown
was due to increased cell surface PrPC.

To confirm that ADAM10 modulated A�O binding in a
PrPC-dependent manner, SH-SY5Y cells lacking PrPC (36) were
treated with ADAM10 siRNA, and A�O binding was assessed.
In these cells, ADAM10 siRNA treatment significantly reduced
the pro and mature forms of ADAM10 and the amount of
sAPP� in the media (Fig. 4, A and B). In the absence of PrPC,
A�O binding was �15% (Fig. 4C) of that observed in cells
expressing PrPC (Figs. 2E and 3E), and this residual binding was
unchanged following knockdown of ADAM10 (Fig. 4, C and D).
Together, these data indicate that ADAM10 modulates A�O
cell surface binding in a PrPC-dependent manner.

Figure 1. Promoting the shedding of PrPC decreases A�O binding in an
ADAM10-dependent manner. A, immunoblots of sPrPC and sAPP� in con-
centrated conditioned media, and of ADAM10, PrPC, APP, and actin in cell
lysates, from SH-SY5Y cells expressing PrPC incubated with or without carba-
chol (Cch; 20 �M) and with or without GI254023X (GI; 10 �M) in Opti-MEM for
24 h at 37 °C. sPrPC (B), sAPP� (C), and ADAM10 (D) immunoblots were quan-
tified and are represented as a percentage of control (n � 4). E, ImageStream
imaging cytometry analysis showing negative (N), middle (M), and high (H)
levels of cell surface PrPC expression in SH-SY5Y cells expressing PrPC incu-
bated without (blue) and with (red) carbachol (20 �M). F, immunofluorescence
microscopy images showing staining of PrPC (green) and A�-biotin (red) in
nonpermeabilized SH-SY5Y cells expressing PrPC incubated with or without
carbachol (20 �M) in Opti-MEM for 3 h at 37 °C followed by incubation with
A�O (500 nM) for 30 min at room temperature. Scale bar, 5 �m. G, quantifica-
tion of PrPC cell surface staining (n � 3) and A�O cell surface binding (n � 3).
H, immunoblot of PrPC in cell lysate samples, prepared from SH-SY5Y cells
expressing PrPC incubated with or without carbachol (20 �M), and treated
without or with N-glycanase for 16 h at 37 °C. I, quantification of deglycosy-
lated full-length (FL) and C1 PrPC species, expressed as the ratio of FL/C1 (n �
4). Statistical analyses were one-way ANOVA with Tukey’s post hoc correction
for multiple-comparison data or independent t test with Welch’s correction
for two-sample comparison. Data are shown as mean � S.E. (error bars); n.s.,
not significant; *, p � 0.05; ***, p � 0.001; ****, p � 0.0001.
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Activation of ADAM10 with acitretin increases the shedding of
PrPC and decreases A�O binding

Acitretin, a synthetic retinoid, increases the expression of
ADAM10 in cell culture and animals, leading to an increase in
sAPP� (30). As acitretin may have potential as a novel thera-
peutic drug for AD due to its ability to increase sAPP� in the
CSF of AD patients (37), we investigated whether acitretin,
via activation of ADAM10, would increase the shedding of
PrPC and decrease A�O binding. Acitretin treatment of the
SH-SY5Y cells expressing PrPC increased the expression of
mature ADAM10 and the shedding of PrPC and sAPP� by 1.2-
fold (Fig. 5, A–C). In the presence of the ADAM10 inhibitor
GI254023X, acitretin failed to induce a significant increase in

the amount of sPrPC (Fig. 5, A and B) or of sAPP� in the media
(Fig. 5, A and C), indicating that it was acting via ADAM10.
Treatment with acitretin caused an increase in ADAM10 pro-
tein (Fig. 5, A and D) and mRNA (Fig. 5E) expression. Treat-
ment with acitretin resulted in a decrease in cell surface expres-
sion of PrPC as evaluated by ImageStream imaging cytometry
(Fig. 5F). This analysis demonstrated a decrease in high-ex-
pressing PrPC cells in a population of cells treated with acitretin
when compared with the control population. The decrease in
cell surface PrPC was confirmed using immunofluorescence

Figure 2. Knockdown of ADAM10 reduces the shedding of PrPC and
increases A�O binding. A, immunoblots of ADAM10 (pro- (p) and mature
(m) forms), PrPC, APP, and actin in cell lysates and of sPrPC and sAPP� in
concentrated conditioned media from SH-SY5Y cells expressing PrPC incu-
bated with either siRNA targeted against ADAM10 (�) (Dharmacon, SMART-
pool) or a nontargeting (�) siRNA control for 48 h followed by incubation with
Opti-MEM for a further 24 h. ADAM10 (B), PrPC and sPrPC (B), and APP and
sAPP� (C) immunoblots were quantified and are represented as a percentage
of control (n � 4 – 6). E, immunofluorescence microscopy images showing
staining of PrPC (green) and A�-biotin (red) in nonpermeabilized SH-SY5Y cells
expressing PrPC following siRNA treatment targeted against ADAM10 and
incubation in the absence or presence of the PrPC antibody, 6D11, for 20 min
at 37 °C followed by A�O incubation (500 nM) for 30 min at room temperature.
Scale bar, 5 �m. F, quantification of PrPC cell surface staining (n � 5); G, A�O
binding to cells (n � 5). Statistical analyses were one-way ANOVA with
Tukey’s post hoc correction for multiple-comparison data or independent t
test with Welch’s correction for two-sample comparison. Data are shown as
mean � S.E. (error bars). n.s., not significant; *, p � 0.05; **, p � 0.01; ****, p �
0.0001.

Figure 3. Knockdown of ADAM10 with an independent siRNA sequence
reduces the shedding of PrPC and increases A�O binding. A, immunoblots
of ADAM10 (pro- (p) and mature (m) forms), PrPC, APP, and actin in cell lysates
and of sPrPC and sAPP� in concentrated conditioned media from SH-SY5Y
cells expressing PrPC incubated with either siRNA targeted against ADAM10
(�) (Ambion, single siRNA) or a nontargeting (�) siRNA control for 48 h, fol-
lowed by incubation with Opti-MEM for a further 24 h. ADAM10 (B), PrPC and
sPrPC (C), and APP and sAPP� (D) immunoblots were quantified and are rep-
resented as a percentage of control (n � 3). E, immunofluorescence micros-
copy images showing staining of PrPC (green) and A�-biotin (red) in nonper-
meabilized SH-SY5Y cells expressing PrPC following siRNA treatment
targeted against ADAM10 and incubation in the absence or presence of the
PrPC antibody, 6D11, for 20 min at 37 °C followed by A�O incubation (500 nM)
for 30 min at room temperature. Scale bar, 5 �m. Shown are quantification of
PrPC cell surface staining (n � 5) (F) and A�O binding to cells (n � 5) (G).
Statistical analyses were one-way ANOVA with Tukey’s post hoc correction for
multiple-comparison data or independent t test with Welch’s correction for
two-sample comparison. Data are shown as mean � S.E. (error bars). n.s., not
significant; *, p � 0.05; **, p � 0.01; ***, p � 0.001.
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microscopy, where acitretin treatment of the cells caused a sig-
nificant decrease (81%) in the amount of PrPC localized to the
cell surface (Fig. 5, G and H). This decrease in cell surface PrPC

with acitretin resulted in a reduction of the amount of A�O
bound to the surface of the cells by 86% (Fig. 5, G and H). These
data indicate that activation of ADAM10 with the retinoic acid
analog acitretin increases the shedding of PrPC and decreases
the binding of A�O to the cells.

Activation of ADAM10 prevents A�O-mediated activation of
Fyn kinase and rescues A�O-mediated increase in ROS

To establish whether promoting the shedding of PrPC

through activation of ADAM10 could decrease A�O cytotox-
icity, we monitored downstream activation of Fyn kinase and
ROS production in cells. Fyn kinase is a member of the Src
family kinases (SFK), and A�Os activate Fyn kinase by phos-
phorylation at Tyr-416 (10, 11). Treatment of cells with A�O
increased pSFK416 levels 1.3-fold (Fig. 5, I and J). Pretreatment
with acitretin abolished the A�O-mediated increase in pSFK
(Fig. 5, I and J). To monitor the effect of A�O on ROS, cells were
primed with menadione to reduce mitochondrial production of
NAD(P)H and increase ROS (38). The addition of A�O
increased ROS by 1.2-fold in cells expressing PrPC (Fig. 5K), but
pretreatment with acitretin abolished the increase in ROS
mediated by A�O (Fig. 5K). Together, these data indicate that
promoting the ADAM10-mediated shedding of PrPC blocks
both the cellular binding and downstream cytotoxicity of A�O.

Activation of ADAM10 increases the shedding of PrPC and
rescues A�O-mediated increase in ROS in human iPSC-derived
cortical neurons

To determine whether activation of ADAM10 would lead to
enhanced shedding of PrPC and reduce A�O toxicity in human

neurons, we used iPSC-derived cortical neurons. The iPSC line
OX1-clone 19 (OX1-19) was verified for pluripotency by the
presence of Oct4, SSEA-4, and nanog and the absence of PAX6
using immunofluorescence microscopy (Fig. 6A). The iPSCs
were differentiated into cortical neurons using the method of
Shi et al. (39). The efficiency of cortical induction was calcu-
lated using PAX6 expression (39). This demonstrated that the
differentiation efficiency of the OX1-19 and SBAD iPSCs was
92.3 � 7.6 and 85.9 � 1.9%, respectively (data described as
mean � S.E. for four cortical inductions of the OX1-19 cell line
and for two cortical inductions of the SBAD cell line). The neu-
ronal marker MAP2 was used along with the marker Tbr1 to
confirm the presence of secondary progenitor cells and Satb2 to
confirm the presence of upper layer neurons (Fig. 6B). Immu-
noblotting of the cortical neurons revealed the presence of APP,
ADAM10, and PrPC (Fig. 6C).

Acitretin treatment of the iPSC-derived cortical neurons at
day 65 increased sAPP� in the media by 1.2-fold (Fig. 6D). In
the presence of the ADAM10 inhibitor, acitretin failed to
induce an increase in the amount of sAPP� in the media (Fig.
6D). Treatment with acitretin decreased cell surface PrPC by
87% (Fig. 6, E and F). A�O treatment increased ROS in the
iPSC-derived cortical neurons (Fig. 6G), and this increase was
blocked by pretreatment of the neurons with acitretin (Fig. 6G).
These data indicate that acitretin, through increasing ADAM10
activity and the shedding of PrPC, blocks the toxicity of A�O in
human neurons.

Activation of ADAM10 increases the neuroprotective sAPP�
but does not decrease A� production in human neurons

Activation of ADAM10 has been reported to increase the
production of the neuroprotective sAPP� and, reciprocally,
decrease A� production (30). However, whether this reciprocal
relationship occurs in human neurons upon activation of
ADAM10 has not been reported. To determine this, we
assessed the effect of acitretin on the relative amounts of
sAPP�, sAPP�, and A� peptides in both the SH-SY5Y cells and
the iPSC-derived neurons. In the SH-SY5Y cells, acitretin
caused a significant increase in sAPP� (Fig. 5C) and a reciprocal
significant decrease in sAPP� (Fig. 7A). The decrease in sAPP�
was paralleled by a decrease in both A�40 and A�42 following
acitretin treatment (Fig. 7, B and C). However, although acitre-
tin increased sAPP� in the iPSC-derived neurons (Fig. 6C),
there was no reciprocal decrease in sAPP� or A� (Fig. 7, D–F).
To ascertain whether this lack of reciprocal effect of acitretin
on the nonamyloidogenic and amyloidogenic pathways was a
feature of neurons, the effect of acitretin on rat primary hip-
pocampal neurons was investigated. Acitretin treatment of the
hippocampal neurons increased the nonamyloidogenic cleav-
age of APP (Fig. 7G) and caused a reciprocal decrease in both
A�40 and A�42 (Fig. 7, H and I). Thus, in both the SH-SY5Y
cells and the rat hippocampal neurons, activation of the
nonamyloidogenic processing of APP results in a reciprocal
decrease in the amyloidogenic processing pathway, whereas in
the human iPSC-derived neurons, no such reciprocal relation-
ship was observed.

Figure 4. ADAM10 fails to increase A�O binding in cells lacking PrPC.
Immunoblots of ADAM10 and actin in cell lysates and of sAPP� in concen-
trated conditioned media from untransfected SH-SY5Y cells, which lack
endogenous PrPC, incubated with either siRNA targeted against ADAM10 (�)
or a nontargeting (�) siRNA control for 48 h followed by incubation with
Opti-MEM for a further 24 h. B, ADAM10 and sAPP� immunoblots were quan-
tified and are represented as a percentage of control (n � 3). C, immunofluo-
rescence microscopy images showing staining of A�-biotin (red) in nonper-
meabilized untransfected SH-SY5Y cells following siRNA treatment targeted
against ADAM10 and incubation with A�O (500 nM) for 30 min at room tem-
perature. Scale bar, 5 �m. D, quantification of A�O binding to cells (n � 5).
Statistical analyses were independent t test with Welch’s correction for two-
sample comparison. Data are shown as mean � S.E. (error bars). **, p � 0.01;
****, p � 0.0001.
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Discussion

Numerous studies have validated PrPC as a key neuronal
receptor for A�O and highlighted the intrinsic role it plays in
the activation of multiple downstream targets, leading to neu-
ronal impairment in AD (reviewed in Refs. 4 and 5). As cleavage
of PrPC by ADAM10 regulates the amount of PrPC at the cell
surface (31–33), we hypothesized that modulation of ADAM10
activity, through altering cell surface PrPC, would impact A�O
binding and toxicity. Here, we show that increasing ADAM10
activity promoted the shedding of cell surface PrPC and, as a
result, blocked the binding of A�O to the surface of neurons
and decreased their cytotoxicity as measured by activation of
Fyn kinase and increase in ROS.

Initially, we used the muscarinic agonist carbachol to pro-
mote the shedding of PrPC based on the observation that car-
bachol promotes the shedding of APP, likely through the acti-
vation of ADAM10 (28). Carbachol decreased the amount of
PrPC at the cell surface, which resulted in reduced binding of
A�O to the cells. Through the use of a selective ADAM10
inhibitor, we show for the first time that carbachol is acting via
ADAM10 to promote the shedding of both PrPC and APP. To
confirm that ADAM10 was altering A�O binding through
modulating cell surface PrPC, we used siRNA knockdown to
reduce ADAM10, which resulted in increased cell surface pres-
entation of PrPC and a concomitant increase in A�O binding.
Although various other proteins have been reported to act as

Figure 5. Acitretin increases PrPC shedding and decreases A�O binding and toxicity in an ADAM10-dependent manner. A, immunoblots of sPrPC and
sAPP� in concentrated conditioned media and of ADAM10, PrPC, APP, and actin in cell lysates from SH-SY5Y cells expressing PrPC incubated with or without
GI254023X (GI) (10 �M) and with or without acitretin (Acit) (20 �M) diluted in Opti-MEM for 48 h at 37 °C. sPrPC (B), sAPP� (C), and ADAM10 (D) immunoblots were
quantified and are represented as a percentage of control (n � 4). E, relative expression of ADAM10 mRNA in SH-SY5Y cells expressing PrPC incubated with or
without acitretin (Acit; 20 �M) (n � 6). F, ImageStream imaging cytometry analysis showing negative (N), middle (M), and high (H) levels of cell surface PrPC

expression in SH-SY5Y cells expressing PrPC incubated without (blue) and with (red) acitretin (20 �M). G, immunofluorescence microscopy images showing
staining for PrPC (green) and A�-biotin (red) in nonpermeabilized SH-SY5Y cells expressing PrPC incubated with or without acitretin (20 �M) in Opti-MEM for 48 h
at 37 °C followed by incubation with A�O (500 nM) for 30 min at room temperature. Scale bar, 5 �m. H, quantification of PrPC cell surface staining (n � 5) and
A�O binding to cells (n � 5). I, immunoblots for the phosphorylated species of Src family kinases (pSFK) and of total Fyn kinase in cell lysates from NB7 cells,
which endogenously express PrPC, incubated with or without acitretin (20 �M) in Opti-MEM for 48 h at 37 °C followed by incubation with A�O (500 nM) for 20
min at 37 °C. J, the ratio of pSFK/Fyn was quantified and is expressed as a percentage of control (n � 5). K, ROS were measured using the ROS-Glo assay in
SH-SY5Y cells expressing PrPC incubated with or without acitretin (20 �M) in Opti-MEM for 48 h at 37 °C and then treated with or without A�O (500 nM) for 90
min at 37 °C. Luminescence was measured and is represented as a percentage of control (n � 6). Statistical analyses were one-way ANOVA with Tukey’s post
hoc correction for multiple-comparison data, or independent t test with Welch’s correction for two-sample comparison. Data are shown as mean � S.E. (error
bars). n.s., not significant; *, p � 0.05; ***, p � 0.001; ****, p � 0.0001.
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cell surface receptors for A�O (reviewed in Ref. 4), the effect of
carbachol activation of ADAM10 on A�O binding was medi-
ated specifically via PrPC. This was evidenced by (i) binding
being blocked using the 6D11 antibody, whose epitope corre-
sponds to the A�O-binding site on PrPC, and (ii) siRNA knock-
down of ADAM10 in cells lacking PrPC failing to increase A�O
binding. The A�O used here have been well-characterized
using biophysical and immunological techniques and corre-
spond to fibrillar oligomers recognized by the conformation-
specific OC antibody (11). Such OC-reactive A�O correlated
with the onset and severity of AD in human brain (40) and with
cognitive decline and tau aggregation and phosphorylation in
a transgenic AD mouse model (41). Whether activation of
ADAM10 will influence the cellular binding of other oligomeric
species of A� will depend on whether their receptors are also
susceptible to ADAM10-mediated shedding.

In addition to using carbachol to activate ADAM10, we also
employed the synthetic retinoid, acitretin, which releases all-
trans-retinoic acid from cellular retinoic acid– binding pro-
teins. This allows the all-trans-retinoic acid to bind to retinoid
acid receptor transcription complexes, which in turn bind to
retinoid binding sites on the ADAM10 promoter, leading to
increased ADAM10 activity (30). Acitretin has previously been

reported to increase the �-secretase cleavage of APP by
ADAM10 both in cellular and animal models (30). Similarly, we
report that acitretin promoted the shedding of APP and PrPC,
both in SH-SY5Y cells and iPSC-derived neurons, which was
blocked by the ADAM10-specific inhibitor. Thus, using two
independently acting activators of ADAM10, we clearly show
that promoting the activity of this metalloprotease reduces the
cellular binding and cytotoxicity of A�O through modulating
cell surface PrPC.

ADAM10 promotes the shedding of the ectodomain of PrPC

by cleaving the protein after residue 228, close to the site of
attachment of the GPI anchor (residue 231) (31). However, it
has also been proposed that ADAM10 is responsible for the
�-cleavage of PrPC between amino acids 110 and 111 just C-ter-
minal to the A�O-binding domain (residues 95–105) (6, 42),
releasing the soluble N1 fragment containing the A�O-binding
domain and leaving the cell-associated C1 fragment (35), an
action that would also be predicted to reduce A�O binding to
the cell surface. The N1 fragment has been shown to bind A�Os
and suppress their toxicity in cultured murine hippocampal
neurons and in an in vivo mouse model of A�-induced memory
dysfunction, leading to the suggestion that up-regulation of N1
production could act as a cellular mechanism to protect against

Figure 6. Activation of ADAM10 by acitretin decreases surface PrPC and decreases A�O toxicity in iPSC-derived neurons. A, immunofluorescence
microscopy images showing staining for the pluripotency markers Pax6, Oct4, SSEA-4, and Nanog in permeabilized OX1-19 iPSCs. Scale bar, 200 �m. B,
immunofluorescence microscopy images showing staining for the neuronal markers Satb2, Tbr1, and MAP2 in OX1-19 iPSCs differentiated to cortical neurons
at day 60. Scale bar, 100 �m. C, immunoblots of APP, ADAM10, PrPC, and actin in cell lysates from OX1-19 iPSCs differentiated to neurons at day 65. D, sAPP�
was quantified, using the MSD system, in conditioned media from day 65 OX1-19 cortical neurons incubated with or without GI254023X (GI; 10 �M) and with
or without acitretin (20 �M) in Opti-MEM for 48 h at 37 °C (n � 6). E, immunofluorescence microscopy images showing staining for PrPC (green) in day 50 OX1-19
cortical neurons incubated with or without acitretin (20 �M) in Opti-MEM for 48 h at 37 °C. Scale bar, 5 �m. F, quantification of PrPC cell surface staining on
nonpermeabilized MAP2-stained neurites, expressed as a percentage of control (n � 3). G, ROS were measured using the ROS-Glo assay in day 65 OX1-19
cortical neurons with or without acitretin (20 �M) in Opti-MEM for 48 h at 37 °C. Cells were incubated with 1% BSA for 10 min to block the nonspecific binding
of A�O and then treated with or without A�O (2.5 �M) for 90 min at 37 °C. Luminescence was measured and is represented as a percentage of control (n � 4 –7).
Statistical analyses were one-way ANOVA with Tukey post hoc correction for multiple-comparison data or independent t test with Welch’s correction for
two-sample comparison. Data are shown as mean � S.E. (error bars). n.s., not significant; *, p � 0.05; **, p � 0.01; ****, p � 0.0001.
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A�O toxicity (43, 44). Carbachol has previously been reported
to increase the �-cleavage of PrPC in HEK293 cells through the
action of ADAM17 (45, 46). Here, we show that in the SH-SY5Y
cells, which express functional muscarinic receptors (29, 47),
the carbachol-stimulated shedding of PrPC and APP is due to
activation of ADAM10, not ADAM17. Furthermore, we were
unable to detect the soluble N1 fragment in the conditioned
medium from the SH-SY5Y cells following carbachol treatment
(data not shown). The differences between our work and that
previously published (45, 46) may reflect the use of different cell
lines in which the relative levels of ADAM10 and ADAM17
differ and/or that in the SH-SY5Y cells, the N1 fragment is
rapidly metabolized. However, as activation of ADAM10 in the
SH-SY5Y cells did not influence the ratio of full-length PrPC to
the C1 fragment, this indicates that the �-cleavage of PrPC is
unaltered in our experimental model, ruling out a contribution
of �-cleavage of PrPC to the mechanism by which ADAM10
activation blocks A�O binding.

A�Os mediate a range of cellular actions that contribute to
their neurotoxicity in AD. Binding of A�O to PrPC leads to
activation of Fyn kinase (10, 11), which in turn phosphorylates
N-methyl-D-aspartate receptors, altering their cell surface dis-
tribution (10), and directly phosphorylates tau on Tyr-18 (9).
A�Os also induce cytotoxicity through increasing ROS (48),
although to date whether this effect is mediated via their bind-
ing to PrPC has not been reported. Here, we show that activa-
tion of ADAM10 blocked the A�O-dependent activation of Fyn
phosphorylation mediated by PrPC. Furthermore, and for the
first time, we report that in both SH-SY5Y cells and human
iPSC-derived neurons, A�O binding to PrPC increases cellular
ROS and that this increase in ROS can be blocked by removing
cell surface PrPC upon ADAM10 activation. Thus, ADAM10
activation can ameliorate the downstream cytotoxicity induced
by A�O binding to PrPC and represents another potential ther-
apeutic approach to disrupt the A�O-PrPC signaling complex
in AD.

Genetic analyses of families with late-onset AD revealed two
rare mutations (Q170H and R181G) in the pro-domain of
ADAM10 that attenuated its �-secretase activity and shifted
APP processing toward �-secretase–mediated cleavage with a
2–3-fold increase in A� levels, enhanced A� plaque load, and
reactive gliosis (49, 50). Based on our work with human iPSC-
derived neurons, it is likely that these mutations in ADAM10
will also lead to increased cell surface PrPC and enhanced A�O
binding and cytotoxicity, which may contribute to the AD phe-
notype in individuals with such ADAM10 mutations.

The general consensus is that there is competition between
the �- and �-secretases for their substrate APP. For example,
in murine primary cortical neurons, ADAM10 knockdown
increased sAPP� and A� (51), and in human iPSC-derived
neurons, inhibition of BACE1 reduced sAPP� and A� and
increased sAPP� (25). However, other studies have failed to
observe such a reciprocal relationship (52). On the whole, how-
ever, activation of ADAM10 has been reported to result in an
increase in sAPP� with a reciprocal decrease in sAPP� and A�
peptides in various cell and transgenic mouse models (24, 30,
53, 54). For example, in APPV717I transgenic mice, moderate
neuronal overexpression of ADAM10 increased the secretion
of sAPP�, reduced the formation of A� peptides, and prevented
their deposition in plaques, whereas expression of mutant cat-
alytically inactive ADAM10, which acts in a dominant negative
manner, led to an increase in the number and size of plaques in
the double transgenic mice (24). Stimulation of ADAM10 pro-
moter activity with the vitamin A analogue acitretin led to an
increase of mature ADAM10 protein that increased the ratio
between �- and �-secretase activity in SH-SY5Y cells, whereas
intracerebral injection of acitretin in APP/PS-1 transgenic mice
led to a reduction of A�40 and A�42 (30). Thus, we were some-
what surprised that although activating ADAM10 with acitre-
tin led to a reduction in A� levels in the SH-SY5Y cells and in
the murine hippocampal neurons, no such decrease in A�40,
A�42, or sAPP� was observed in iPSC-derived neurons from
two different individuals, despite there being a similar increase
in sAPP� in all three cell models. This result with human neu-
rons is consistent with the result from a pilot clinical trial in
which 21 mild to moderate AD patients were treated with aci-

Figure 7. The effect of acitretin on A� production is cell type– depen-
dent. sAPP� (A), A�40 (B), and A�42 (C) were quantified by MSD analysis in
conditioned media from SH-SY5Y cells expressing PrPC incubated with or
without acitretin (20 �M) in Opti-MEM for 48 h at 37 °C (n � 3). sAPP� (D),
A�40 (E), and A�42 (F) were quantified by MSD analysis in conditioned media
from day 65 cortical neurons incubated with or without acitretin (20 �M) in
Opti-MEM for 48 h at 37 °C (n � 6 differentiations of two iPSC lines, OX1-19
and SBAD). G–I, immunoblotting and quantification of sAPP� in concentrated
conditioned media (G) and quantification of A�40 (H) and A�42 (I) by MSD
analysis in conditioned media from rat primary hippocampal neurons incu-
bated with or without acitretin (20 �M) in Opti-MEM for 48 h at 37 °C (n � 3).
Data are expressed as a percentage of control. Statistical analyses were
Mann–Whitney U test for n � 3 and independent t test with Welch’s correc-
tion for n 	 3. Data are shown as mean � S.E. (error bars). n.s., not significant;
*, p � 0.05; **, p � 0.01; ***, p � 0.001.
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tretin for 4 weeks. In the AD patients, acitretin caused a signif-
icant increase in CSF sAPP� when compared with a placebo
control group, but there was not a reciprocal significant
decrease in sAPP�, and A�42 was unchanged between the two
groups (37). Together, these observations suggest that the
reciprocal relationship between the nonamyloidogenic and
amyloidogenic APP-processing pathways may not hold true in
human neurons when �-secretase cleavage is stimulated.

Regardless of whether activation of ADAM10 leads to a
decrease in A� by shifting the balance of APP processing
between the nonamyloidogenic and amyloidogenic pathways,
activation of ADAM10 could be beneficial in AD by acting
through other mechanisms. Activation of ADAM10 will
directly increase sAPP� that has neuroprotective, neu-
rotrophic, and neurogenic properties (55–57), elevates adult
neurogenesis in the hippocampus (50), and has been reported
to decrease A� generation by directly associating with BACE1
and modulating its activity (58). In addition, as we have dem-
onstrated here, activation of ADAM10 will increase the shed-
ding of PrPC to reduce the cellular binding and downstream
toxicity of A�O. However, as well as shedding APP and PrPC,
ADAM10 also proteolytically cleaves more than 90 membrane
proteins in the central nervous system, many of which are
essential for brain development and normal physiological func-
tions (59, 60). Thus, whether activation of ADAM10 will only
have beneficial effects is unclear, a situation that may be exac-
erbated if activation were to occur over a prolonged period of
time as required to treat a chronic condition such as AD.

We have shown that activation of ADAM10 promotes the
proteolytic shedding of the A�O receptor PrPC from the sur-
face of human neuroblastoma cells and iPSC-derived neurons.
This shedding of PrPC reduces the binding of A�O to cells and
blocks their cytotoxicity as monitored by activation of Fyn
kinase and increase in ROS. These data provide the first indica-
tion that modulating cell surface PrPC may contribute to the
therapeutic potential of ADAM10 activation in AD and con-
tribute to the neurodegeneration observed in individuals with
mutations in ADAM10. In addition, we report that activation of
ADAM10 does not result in a decrease in A� levels in the
human iPSC-derived neurons, a result consistent with the
results from a study following acitretin administration in
humans (37) and highlighting that human iPSC-derived neu-
rons are a valuable model system to explore the mechanisms
underlying AD.

Experimental procedures

Cell culture

SH-SY5Y human neuroblastoma cells were stably trans-
fected with the cDNA encoding murine PrPC containing the
3F4 epitope tag (human M108/M111) as described previously
(61). Both untransfected and PrPC-expressing SH-SY5Y cells
were cultured in Dulbecco’s modified Eagle’s medium supple-
mented with 10% (v/v) fetal bovine serum. NB7 human neuro-
blastoma cells were cultured in RPMI 1640 medium (Sigma)
supplemented with 10% (v/v) fetal bovine serum. Cells were
maintained in a humidified incubator at 37 °C in a 5% CO2, 95%
air atmosphere.

Culture and differentiation of induced pluripotent stem cells

The iPSC lines, OX1-19 (obtained from S. Cowley, Uni-
versity of Oxford) (62) and SBAD03-05 (obtained from
StemBANCC) (63) were maintained on Matrigel (BD Biosci-
ences) in mTeSR1 medium (StemCell Technologies) contain-
ing 50 units/ml penicillin and 50 �g/ml streptomycin (Life
Technologies, Inc.) in a humidified incubator at 37 °C in a 5%
CO2, 95% air atmosphere. iPSCs were differentiated to cortical
neurons as described previously (39), using dual-SMAD inhibi-
tion by 1 �M dorsomorphin and 10 �M SB431452 (Tocris). Fol-
lowing successful differentiation, neural progenitor cells were
replated on day 35 postinduction at 250,000 cells/well onto
polyornithine and laminin-coated (Sigma) 6-well tissue culture
plates and cultured until day 65 postinduction with medium
changes every 2–3 days. iPSC pluripotency and successful cor-
tical neuron differentiation were confirmed using immunoflu-
orescence microscopy with appropriate markers.

Preparation of rat primary hippocampal neurons

Primary neurons were prepared from the hippocampi of
1–2-day-old Wistar rats and cultured as described previously
(64). Neurons were cultured for 14 days with medium changes
every 3– 4 days.

Activation and inhibition of ADAM10

To activate ADAM10, cells were incubated in Opti-MEM
containing GlutaMAX (Life Technologies) containing either 20
�M carbachol (Sigma) for 24 h or 20 �M acitretin (Sigma) for
48 h. To inhibit ADAM10, cells were incubated with 10 �M

GI254023X (Tocris), a selective ADAM10 inhibitor, for either
24 or 48 h in Opti-MEM. DMSO only–treated cells were used
for comparison with treated cells.

RNAi studies

siRNA specific for human ADAM10 and a nontargeting
sequence were obtained as SMARTpools from Dharmacon
(Thermo Fisher Scientific). An additional, single siRNA se-
quence for human ADAM10 was also obtained for verification
experiments (Ambion). SH-SY5Y (untransfected or PrPC-ex-
pressing) cells were seeded into T75 flasks or 24-well plates in
routine culture medium and allowed to adhere overnight. The
cell monolayers were washed twice with Dulbecco’s PBS
(DPBS), and a 25 nM (final concentration) SMARTpool siRNA
solution was delivered as a complex with DharmaFECT-1 trans-
fection reagent (Dharmacon) in serum-containing DMEM for
48 h. Cells were then washed twice in DPBS prior to incubation in
Opti-MEM for 24 h.

Conditioned medium, cell lysate, and cell membrane
preparation

Conditioned medium was harvested, and cell debris was pel-
leted by centrifugation at 500 
 g for 5 min. A 1-ml sample of
conditioned medium was removed for immunoassay and
stored at �20 °C. Remaining conditioned media were concen-
trated to 100 �l in a Vivapsin 20-ml concentrator (10,000
molecular weight membrane) by centrifugation at 1,900 
 g for
�1 h in a bench top centrifuge at 4 °C. Cells were washed in PBS
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(Lonza), harvested, and pelleted at 1,400 
 g for 3 min. Cells
were lysed on ice for 30 min in radioimmune precipitation assay
buffer (50 mM Tris/HCl, 150 mM NaCl, 0.5% (w/v) sodium
deoxycholate, 1% (v/v) Nonidet P-40, pH 8.0) containing pro-
tease and phosphatase inhibitor mixtures (Roche Diagnostics
Ltd.). Cell lysates were clarified by centrifugation at 12,460 
 g
for 10 min at 4 °C, and the clarified lysate was stored at �20 °C
before use. For the preparation of membranes, cells were resus-
pended in 3 ml of 50 mM HEPES, pH 7.5, and sonicated at
amplitude 7 �m for 30 s using a Soniprep150 disintegrator. The
cell suspension was then centrifuged at 2,500 
 g for 10 min at
4 °C to pellet cell membranes and nuclei. The supernatant was
then centrifuged in a Beckman Coulter Optima at 100,000 
 g
for 1 h at 4 °C. Membranes were resuspended in 50 mM Tris/
HCl, pH 7.5, 2 mM EDTA, 150 mM NaCl, and 1% (w/v)
CHAPSO. Protein concentration of all samples was determined
by a bicinchoninic acid assay.

Deglycosylation of cell lysate samples

All deglycosylation solutions were purchased from Prozyme.
Cell lysates were made up to 100 �g of protein in a 150-�l
volume and boiled for 5 min in 20% (v/v) 5
 N-glycanase reac-
tion buffer and 4% denaturation solution. After cooling, 4%
detergent solution was added to each tube. To one of the tubes,
0.5% (v/v) N-glycanase (200 milliunits) was added and incu-
bated at 37 °C for 16 h.

Immunoblotting

Samples were made up in dissociation buffer (1
 dissocia-
tion buffer (100 mM Tris-HCl, 2% (w/v) SDS, 10% (v/v) glycerol,
100 mM DTT, 0.02% (w/v) bromphenol blue, pH 6.8) and
heated at 95 °C for 5 min. Proteins were resolved by SDS-PAGE
on 7–17% acrylamide Tris-glycine gels and then transferred to
Hybond polyvinylidene difluoride membranes (GE Health-
care). Following electrotransfer, the membranes were blocked
for 1 h in PBS with 0.1% Tween 20 (PBST) and 5% (w/v) nonfat
milk and then incubated with primary antibody overnight at
4 °C. Antigens were probed using the following primary anti-
bodies: anti-APP (22C11, Millipore), SAF32 (anti-PrP N termi-
nus, Cayman Chemical), 8H4 (anti-PrP residues 175–185),
anti-ADAM10 antibody (Abcam), 6E10 (anti-A�(1–17), Merck
Biosciences), AC15 (anti-�-actin) and synapsin 1 (Sigma), 2B3
(anti-human sAPP�, Immuno-Biological Laboratories), and
anti-phospho-Src family kinase (Tyr-416; Cell Signaling Tech-
nology). Primary antibodies were detected by incubation with
horseradish peroxidase– conjugated secondary antibody, both
in PBST containing 2% BSA. Bound horseradish peroxidase
conjugates were visualized using the ECL� detection system
with a Syngene Gbox XT4 (Syngene). Densitometric analysis
was performed using Genetools analysis software (Syngene).

ImageStream imaging cytometry

SH-SY5Y cells expressing PrPC were incubated in Opti-
MEM containing GlutaMAX and either 20 �M carbachol for
24 h or 20 �M acitretin for 48 h. DMSO only–treated cells were
used for comparison with treated cells. Cells were collected in
PBS without metals and recovered by centrifugation (300 
 g
for 5 min). All subsequent procedures were carried out at 4 °C.

Cells were resuspended in blocking buffer (10% donkey serum
in PBS containing metals) at 20 
 106 cells/ml and incubated in
primary antibody, SAF32, for 1 h before washing twice with PBS
and recovering cells by centrifugation. Cells were then resus-
pended in blocking buffer and incubated with donkey anti-
mouse Alexa Fluor� 488 (Invitrogen) for 30 min in the dark.
Cells were washed twice in PBS, fixed in 3% (v/v) paraformal-
dehyde, and then finally resuspended in PBS before analysis
using the ImageStreamX MkII imaging cytometer (Amnis).
Brightfield, fluorescence, and dark field scatter images were
collected at 
40 magnification for 3000 cells over six biological
repeats. Cells were identified by the area and aspect ratio
parameters. In focus cells were identified as having a gradient
root mean square measure of 	40. AlexaFluor� 488 emission
was generated by a 488-nm laser set to 100 milliwatts in the
INSPIRE software (Amnis). Data were analyzed in IDEAS soft-
ware (Amnis) and exported to Flowjo version 10 (Tree Star,
Inc.) to generate overlay histograms.

A� oligomer preparation

Synthetic biotin-A�(1– 42) containing a 6-carbon linker
between the biotin moiety and the N terminus of A� was pur-
chased from AnaSpec (San Jose, CA). A�Os were prepared as
described previously (11). Briefly, A� peptide was dissolved in
1,1,1,3,3,3-hexafluoropropan-2-ol to break down any aggre-
gated material, dried under a stream of N2 gas, and stored at
�80 °C. Peptide films of biotin-A�(1– 42) were dissolved in
DMSO to 1 mM and then resuspended in Ham’s F-12 medium
(Lonza) to a final monomer concentration of 100 �M and incu-
bated for 18 –24 h at room temperature. The preparation was
then centrifuged at 14,000 
 g for 20 min to pellet out any
fibrillar material, and the supernatant was retained as the oli-
gomer preparation.

Fluorescence microscopy

SH-SY5Y cells were cultured in growth medium to �60%
confluence on glass coverslips before required incubations
(addition of carbachol, acitretin, or GI254023X, as described)
or ADAM10 siRNA treatments were carried out. For A�O-
binding experiments, cells were incubated with 500 nM A�O
(total peptide concentration) diluted in Opti-MEM for 30 min
at 37 °C. Where indicated, a 20-min preincubation with or
without 10 �g/ml 6D11 antibody (Covance, BioLegend) was
carried out before incubation with A�Os. Postincubation, cells
were fixed with 4% (v/v) paraformaldehyde and blocked over-
night at 4 °C in DPBS with 5% (v/v) fish skin gelatin. Where
required, cells were permeabilized in 0.1% Triton X-100 for 10
min at room temperature before blocking. Coverslips were sub-
sequently incubated for 2 h in the same buffer containing pri-
mary antibody, washed, and then incubated with the corre-
sponding fluorescently labeled secondary antibody. PrPC was
detected using SAF32 antibody followed by donkey anti-mouse
AlexaFluor� 488, and MAP2 was detected with anti-MAP2
(Millipore) followed by goat anti-chicken Alexa Fluor 647 Cy5-
IgG (Invitrogen) and biotin-A�(1– 42) (for detection of A�O)
using Texas Red– conjugated streptavidin (Invitrogen). Nuclei
were counterstained by washing briefly in DAPI stain, and cov-
erslips were mounted onto glass slides using Fluoromount-G
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(Southern Biotech). Cells were visualized using a DeltaVision
optical restoration microscopy system (Applied Precision).
Data were collected from 12 0.5-�m-thick optical sections, and
three-dimensional data sets were deconvolved using the soft-
WoRx program (Applied Precision). Images analyzed were
individual z-sections taken from the middle of the data stack,
representing a section through the center of the cell. The num-
ber of cells analyzed is indicated in individual figure legends.
Fluorescence around the cell membrane was quantified using
ImageJ software as described previously (65). This was plotted
as pixel intensity versus distance around the cell using
Microsoft Excel, and then the percentage of cell surface with
detectable staining was calculated from multiple images.

For the fluorescence microscopy of iPSCs and iPSC-derived
cortical neurons, cells were grown on laminin-coated cover-
slips, fixed with 4% (v/v) paraformaldehyde, and blocked for 4 h
at room temperature in DPBS with 10% (v/v) donkey serum.
Where required, cells were permeabilized in 0.2% Triton X-100
for 4 min at room temperature before blocking. Coverslips were
then incubated with iPSC-specific markers (PAX6, Oct4,
SSEA-4, and nanog; Abcam) to check pluripotency and with
neuronal markers (Satb2, Tbr1, and MAP2; Abcam) to confirm
differentiation. Each primary antibody was detected with the
corresponding secondary antibody, Alexa Fluor 488, 594, or
647. DAPI stain was applied, and coverslips were mounted
using ProLong Gold containing DAPI (Southern Biotech). Cells
were visualized using an EVOS FL cell imaging system (Thermo
Fisher Scientific).

qPCR

SH-SY5Y cells expressing PrPC were incubated in Opti-
MEM containing GlutaMAX and 20 �M acitretin for 48 h.
DMSO only-treated cells were used for comparison with
treated cells. Cells were harvested, and RNA was extracted
using the RNeasy plus kit (QIAgen) according to the manufa-
cturer’s instructions. cDNA was synthesized using 1 �g of pre-
pared RNA using the iScript cDNA synthesis kit (Bio-Rad)
according to the manufacturer’s instructions. The mRNA
expression level of ADAM10 was analyzed by real-time qPCR
using the SYBR Green method (Applied Biosystems) with the
sense and antisense primers reported previously (66). Samples
were analyzed in triplicate on a Quantstudio 3 (Life Technolo-
gies), and relative expression was calculated using ribosomal
qPCR as the control.

Multiplex immunoassay

A�40 and A�42 were measured using the V-PLEX A� pep-
tide panel 1 (6E10) assay (MSD (Meso Scale Discovery), catalog
no. K15200E). sAPP� and sAPP� were measured using the
sAPP�/sAPP� multiplex assay kit (MSD, catalog no. K15120E)
according to the manufacturer’s instructions. Assay plates were
blocked, and conditioned cell medium samples and standards
buffered with 500 mM HEPES, pH 7.4, to a final concentration
of 50 mM were loaded in duplicate. Following washing and sec-
ondary antibody incubation, assays were read using the MESO
QUICKPLEX SQ 120 imager and analyzed using MSD Work-
bench 4.0 software. The protein concentration of the condi-
tioned medium was determined by a bicinchoninic acid assay,

and sAPP�, sAPP�, and A� levels were corrected for total pro-
tein concentration.

ROS assay

For the detection of ROS in cells, H2O2 production was mea-
sured with the ROS-GloTM H2O2 assay system (Promega).
SH-SY5Y cells expressing PrPC were seeded onto black-walled,
clear bottom 96-well plates and allowed to adhere overnight.
Cells were then incubated with or without 20 �M acitretin
diluted in Opti-MEM for 48 h before incubation with or with-
out A�O (500 nM) in the presence of 10 �M menadione (Sigma)
and the H2O2 substrate at 37 °C for 90 min. ROS-Glo detection
solution and signal enhancer were then added, and, after a
20-min incubation at room temperature, luminescence was
measured with a Synergy HT Bio-Tek fluorimeter using Gen5
software. For experiments with cortical neurons, the above
method was used with the following modifications. Cells were
plated at day 35 and cultured until day 65. Following acitretin
incubation, 1% BSA was added to cell cultures for 10 min to
block the nonspecific binding of A�O to the laminin coating on
the plates prior to incubation with 2.5 �M A�Os.

Statistical analysis

Data were analyzed as stated in the figure legends, and n
numbers are specified. For statistical analysis, data were ana-
lyzed using GraphPad Prism version 7.00. A normal distribu-
tion was assumed for all cell data as mean values were recorded
from a population of cells (based on the assumption that cells
from a clonal population will respond in a similar manner), and
therefore parametric analyses were performed. For comparison
between two data sets, an independent t test was applied with
Welch’s correction (equal S.D. values not assumed). For the rat
primary hippocampal neuron data, a Mann–Whitney U test
was used to compare between groups, as a normal distribution
could not be assumed or determined from the sample size. For
multiple comparisons, a one-way ANOVA with Tukey’s post
hoc correction for pairwise comparisons was used. Data are
shown as mean � S.E., and p � 0.05 was considered significant.
Levels of significance are defined in the figure legends.
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