63 research outputs found

    On soft singularities at three loops and beyond

    Get PDF
    We report on further progress in understanding soft singularities of massless gauge theory scattering amplitudes. Recently, a set of equations was derived based on Sudakov factorization, constraining the soft anomalous dimension matrix of multi-leg scattering amplitudes to any loop order, and relating it to the cusp anomalous dimension. The minimal solution to these equations was shown to be a sum over color dipoles. Here we explore potential contributions to the soft anomalous dimension that go beyond the sum-over-dipoles formula. Such contributions are constrained by factorization and invariance under rescaling of parton momenta to be functions of conformally invariant cross ratios. Therefore, they must correlate the color and kinematic degrees of freedom of at least four hard partons, corresponding to gluon webs that connect four eikonal lines, which first appear at three loops. We analyze potential contributions, combining all available constraints, including Bose symmetry, the expected degree of transcendentality, and the singularity structure in the limit where two hard partons become collinear. We find that if the kinematic dependence is solely through products of logarithms of cross ratios, then at three loops there is a unique function that is consistent with all available constraints. If polylogarithms are allowed to appear as well, then at least two additional structures are consistent with the available constraints.Comment: v2: revised version published in JHEP (minor corrections in Sec. 4; added discussion in Sec. 5.3; refs. added); v3: minor corrections (eqs. 5.11, 5.12 and 5.29); 38 pages, 3 figure

    Form Factors in N=4 Super Yang-Mills and Periodic Wilson Loops

    Full text link
    We calculate form factors of half-BPS operators in N=4 super Yang-Mills theory at tree level and one loop using novel applications of recursion relations and unitarity. In particular, we determine the expression of the one-loop form factors with two scalars and an arbitrary number of positive-helicity gluons. These quantities resemble closely the MHV scattering amplitudes, including holomorphicity of the tree-level form factor, and the expansion in terms of two-mass easy box functions of the one-loop result. Next, we compare our result for these form factors to the calculation of a particular periodic Wilson loop at one loop, finding agreement. This suggests a novel duality relating form factors to periodic Wilson loops.Comment: 26 pages, 10 figures. v2: typos fixed, comments adde

    Complex Calculations: How Drug Use During Pregnancy Becomes a Barrier to Prenatal Care

    Get PDF
    Pregnant women who use drugs are more likely to receive little or no prenatal care. This study sought to understand how drug use and factors associated with drug use influence women’s prenatal care use. A total of 20 semi-structured interviews and 2 focus groups were conducted with a racially/ethnically diverse sample of low-income women using alcohol and drugs in a California county. Women using drugs attend and avoid prenatal care for reasons not connected to their drug use: concern for the health of their baby, social support, and extrinsic barriers such as health insurance and transportation. Drug use itself is a barrier for a few women. In addition to drug use, women experience multiple simultaneous risk factors. Both the drug use and the multiple simultaneous risk factors make resolving extrinsic barriers more difficult. Women also fear the effects of drug use on their baby’s health and fear being reported to Child Protective Services, each of which influence women’s prenatal care use. Increasing the number of pregnant women who use drugs who receive prenatal care requires systems-level rather than only individual-level changes. These changes require a paradigm shift to viewing drug use in context of the person and society and acceptance of responsibility for unintended consequences of public health bureaucratic procedures and messages about effects of drug use during pregnancy

    From Webs to Polylogarithms

    Get PDF
    We compute a class of diagrams contributing to the multi-leg soft anomalous dimension through three loops, by renormalizing a product of semi-infinite non-lightlike Wilson lines in dimensional regularization. Using non-Abelian exponentiation we directly compute contributions to the exponent in terms of webs. We develop a general strategy to compute webs with multiple gluon exchanges between Wilson lines in configuration space, and explore their analytic structure in terms of αij\alpha_{ij}, the exponential of the Minkowski cusp angle formed between the lines ii and jj. We show that beyond the obvious inversion symmetry αij1/αij\alpha_{ij}\to 1/\alpha_{ij}, at the level of the symbol the result also admits a crossing symmetry αijαij\alpha_{ij}\to -\alpha_{ij}, relating spacelike and timelike kinematics, and hence argue that in this class of webs the symbol alphabet is restricted to αij\alpha_{ij} and 1αij21-\alpha_{ij}^2. We carry out the calculation up to three gluons connecting four Wilson lines, finding that the contributions to the soft anomalous dimension are remarkably simple: they involve pure functions of uniform weight, which are written as a sum of products of polylogarithms, each depending on a single cusp angle. We conjecture that this type of factorization extends to all multiple-gluon-exchange contributions to the anomalous dimension.Comment: 64 pages, 8 figure

    The potential impact of expanding target age groups for polio immunization campaigns

    Get PDF
    BACKGROUND: Global efforts to eradicate wild polioviruses (WPVs) continue to face challenges due to uninterrupted endemic WPV transmission in three countries and importation-related outbreaks into previously polio-free countries. We explore the potential role of including older children and adults in supplemental immunization activities (SIAs) to more rapidly increase population immunity and prevent or stop transmission. METHODS: We use a differential equation-based dynamic poliovirus transmission model to analyze the epidemiological impact and vaccine resource implications of expanding target age groups in SIAs. We explore the use of older age groups in SIAs for three situations: alternative responses to the 2010 outbreak in Tajikistan, retrospective examination of elimination in two high-risk states in northern India, and prospective and retrospective strategies to accelerate elimination in endemic northwestern Nigeria. Our model recognizes the ability of individuals with waned mucosal immunity (i.e., immunity from a historical live poliovirus infection) to become re-infected and contribute to transmission to a limited extent. RESULTS: SIAs involving expanded age groups reduce overall caseloads, decrease transmission, and generally lead to a small reduction in the time to achieve WPV elimination. Analysis of preventive expanded age group SIAs in Tajikistan or prior to type-specific surges in incidence in high-risk areas of India and Nigeria showed the greatest potential benefits of expanded age groups. Analysis of expanded age group SIAs in outbreak situations or to accelerate the interruption of endemic transmission showed relatively less benefit, largely due to the circulation of WPV reaching individuals sooner or more effectively than the SIAs. The India and Nigeria results depend strongly on how well SIAs involving expanded age groups reach relatively isolated subpopulations that sustain clusters of susceptible children, which we assume play a key role in persistent endemic WPV transmission in these areas. CONCLUSIONS: This study suggests the need to carefully consider the epidemiological situation in the context of decisions to use expanded age group SIAs. Subpopulations of susceptible individuals may independently sustain transmission, which will reduce the overall benefits associated with using expanded age group SIAs to increase population immunity to a sufficiently high level to stop transmission and reduce the incidence of paralytic cases

    Developmental perspectives on interpersonal affective touch

    Get PDF
    In the last decade, philosophy, neuroscience and psychology alike have paid increasing attention to the study of interpersonal affective touch, which refers to the emotional and motivational facets of tactile sensation. Some aspects of affective touch have been linked to a neurophysiologically specialised system, namely the C tactile (CT) system. While the role of this sys-tem for affiliation, social bonding and communication of emotions have been widely investigated, only recently researchers have started to focus on the potential role of interpersonal affective touch in acquiring awareness of the body as our own, i.e. as belonging to our psychological ‘self’. We review and discuss recent developmental and adult findings, pointing to the central role of interpersonal affective touch in body awareness and social cognition in health and disorders. We propose that interpersonal affective touch, as an interoceptive modality invested of a social nature, can uniquely contribute to the ongoing debate in philosophy about the primacy of the relational nature of the minimal self

    Innocuous pressure sensation requires A-type afferents but not functional ΡΙΕΖΟ2 channels in humans.

    Get PDF
    The sensation of pressure allows us to feel sustained compression and body strain. While our understanding of cutaneous touch has grown significantly in recent years, how deep tissue sensations are detected remains less clear. Here, we use quantitative sensory evaluations of patients with rare sensory disorders, as well as nerve blocks in typical individuals, to probe the neural and genetic mechanisms for detecting non-painful pressure. We show that the ability to perceive innocuous pressures is lost when myelinated fiber function is experimentally blocked in healthy volunteers and that two patients lacking Aβ fibers are strikingly unable to feel innocuous pressures at all. We find that seven individuals with inherited mutations in the mechanoreceptor PIEZO2 gene, who have major deficits in touch and proprioception, are nearly as good at sensing pressure as healthy control subjects. Together, these data support a role for Aβ afferents in pressure sensation and suggest the existence of an unknown molecular pathway for its detection
    corecore