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Abstract: We compute a class of diagrams contributing to the multi-leg soft anomalous

dimension through three loops, by renormalizing a product of semi-infinite non-lightlike

Wilson lines in dimensional regularization. Using non-Abelian exponentiation we directly

compute contributions to the exponent in terms of webs. We develop a general strategy to

compute webs with multiple gluon exchanges between Wilson lines in configuration space,

and explore their analytic structure in terms of αij , the exponential of the Minkowski

cusp angle formed between the lines i and j. We show that beyond the obvious inversion

symmetry αij → 1/αij , at the level of the symbol the result also admits a crossing symmetry

αij → −αij , relating spacelike and timelike kinematics, and hence argue that in this class

of webs the symbol alphabet is restricted to αij and 1− α2
ij . We carry out the calculation

up to three gluons connecting four Wilson lines, finding that the contributions to the soft

anomalous dimension are remarkably simple: they involve pure functions of uniform weight,

which are written as a sum of products of polylogarithms, each depending on a single cusp

angle. We conjecture that this type of factorization extends to all multiple-gluon-exchange

contributions to the anomalous dimension.

Keywords: renormalization, perturbative QCD, resummation, exponentiation, Wilson

lines, eikonal approximation, soft singularities, polylogarithms, symbol
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1 Introduction

Gauge theory scattering amplitudes are known to be infrared singular [1]. Understanding

the detailed structure of these singularities is important for collider physics [2–42]: it is a

prior condition to cross-section calculations in which these singularities cancel in the sum

of real and virtual corrections. In many circumstances these cancellations leave behind

parametrically-large logarithms, which can be resummed to all order, see e.g. refs. [43–75].

The infrared structure of amplitudes is also interesting from a purely field-theoretic

perspective. This is underlined by the possibility to explore all-order structures and form a

bridge with strong-coupling methods. While progress on this front was largely restricted to

(planar) N = 4 supersymmetric Yang-Mills theory, e.g. [76–85], where amplitudes appear

to be directly related to certain Wilson loops, infrared singularities are generally similar

across all gauge theories and can be computed by considering products of Wilson-line

operators.

Long-distance singularities have been investigated since the early days of QCD, and

have been a subject of continuous theoretical interest [2–16, 18–42]. In recent years we

have seen significant progress towards determining the singularities of multi-leg amplitudes

with general kinematics beyond the planar limit and beyond one loop [4, 19, 20, 25–34, 41].

Complete two-loop results are now available for the soft anomalous dimension in both the

massless and massive cases. Furthermore, in the massless case all-order constraints have

been deduced from factorization and rescaling symmetry, leading to a minimal ansatz in

which the anomalous dimension takes the form of a sum over colour dipoles [35–37, 39,

40]. Corrections to the dipole formula may first appear at three loops, from diagrams

involving four Wilson lines. Despite recent progress [35–40, 86–92], it seems that general

considerations fall short of excluding or fixing these corrections1; further input from explicit

calculations is needed. This motivates the present work, which is part of a larger project

aimed at determining the anomalous dimension at three-loop order, and understanding its

structure to all orders.

A separate line of investigation where much progress was made recently is soft-gluon

exponentiation. Denoting the soft-gluon amplitude, or equivalently the correlator of Wil-

son lines, by S (see eq. (1.9) below), the general observation is that the corresponding

exponent w, defined by S = expw, has a simpler perturbative expansion with some re-

markable properties. In particular, all colour factors appearing in the exponent correspond

to connected graphs [93]. There are two complementary approaches to exponentiation: one

is based on evolution equations [2–15, 18, 19, 21–40], which are ultimately a consequence

of multiplicative renormalizability [94–97], and the second is a diagrammatic approach,

the direct computation of the exponent in terms of webs [93, 98–104]. Following ref. [104],

we shall make simultaneous use of both approaches, aiming to compute the anomalous

dimension in terms of webs.

The diagrammatic approach to exponentiation is summarised by the non-Abelian ex-

ponentiation theorem. This theorem was established in the 1980’s in the context of a

1A very interesting argument has been formulated recently [92] based on the Regge limit, indicating that

the dipole formula should be violated at four loops.
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Wilson loop [99, 100], and was recently generalised to the case of multiple Wilson lines in

arbitrary representations of the colour group [93, 101–104]. In contrast to the Abelian case,

where only connected diagrams contribute to the exponent, in a non-Abelian theory cer-

tain non-connected diagrams2 contribute as well. The non-Abelian exponentiation theorem

states that such a diagram D contributes to the exponent with a modified, Exponentiated

Colour Factor (ECF) C̃(D), which corresponds to a connected graph [93].

In the case of multiple Wilson lines it is useful to define webs as sets of diagrams which

contribute to the exponent together, rather than as individual diagrams. These sets are

formed by taking all possible permutations of the order of gluon attachments to the Wilson

lines. Each such set of diagrams constitutes a single web W . A web will be denoted by

W(n1,...,nL) or simply n1−n2− . . .−nL, where ni > 0 is the number of gluon attachments on

line i, and it is assumed that there are L lines in total. The contribution of these diagrams

to the exponent w takes the form [101]:

W =
∑
D

F(D)C̃(D) =
∑
D,D′

F(D)RDD′C(D′). (1.1)

Here {F(D)} and {C(D)} are, respectively, the sets of kinematic functions and colour

factors associated with all diagrams D ∈ W , diagrams which are related to each other by

permuting the order of gluon emissions, while RDD′ is a matrix of rational numbers called

the web mixing matrix. Thus each web has an associated web mixing matrix which dictate

how colour and kinematic information is entangled. These matrices were further studied

in refs. [103, 104], where it was shown that web mixing matrices are idempotent, R2 = R,

namely they act as projection operators, selecting particular linear combinations of colour

factors, those corresponding to unit eigenvalues of R, to appear in the exponent. It was

then proven [93] that these combinations always correspond to connected graphs.

The mixing matrix can also be viewed as acting on the kinematic factors, generating

particular linear combinations of {F(D)} in which certain subdivergences cancel, as dic-

tated by the renormalisation properties of the vertex at which the Wilson lines meet [104].

It was also shown that the contents of web mixing matrices can be obtained purely from

combinatorial reasoning [103]. This has been further used in refs. [105, 106] to establish

a relation with partially ordered sets, and deduce all-order solutions for certain classes of

webs.

Our interest in the present paper is to develop techniques to evaluate the integrals

associated with webs connecting several non-lightlike Wilson lines and determine the con-

tributions of these webs to the angle-dependent soft anomalous dimension. We consider

here webs involving multiple-gluon-exchange diagrams with no three- or four-gluon vertices.

An example of a diagram in this class is shown in figure 1. Within this general class we

further focus on these webs that connect the maximal number of Wilson lines at any given

order, that is three Wilson lines3 at two loops, as in figure 6, where we will reproduce the

results of refs. [26, 31, 33], and four Wilson lines at three loops, as in figures 7 and 8. We

2In this context ‘connected’ and ‘non-connected’ refers to the diagram after removing the Wilson lines.
3The two-line case is the familiar angle-dependent cusp anomalous dimension, which was computed at

two-loops in refs. [4, 16].
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1 2

34

Figure 1. An example multiple-gluon-exchange diagram connecting four semi-infinite Wilson lines

at seven loops. The 4-velocities associated with the directions of the Wilson lines in Minkowki

space are indicated by βi. The lines all meet at the origin, where there is a local effective vertex

representing the hard interaction.

emphasise at the outset that evaluating the full soft anomalous dimension at three loops

is beyond the scope of the present paper. In particular the computation of webs involving

three- or four-gluon vertices, as shown in figures 2 and 3, requires different techniques; this

work is being carried out in parallel and the results will be published separately.

Figure 2. Connected three-loop diagrams with 3- or 4-gluon vertices spanning four Wilson lines.

In the final part of the introduction we briefly review how correlators of Wilson-lines

arise, define the soft anomalous dimension and outline the general strategy for computing

it. This closely follows the approach of ref. [104] (see also refs. [31, 102]) where detailed

derivations can be found. Our approach uses the very powerful observation [4], that soft

singularities in amplitudes can be deduced from the ultraviolet singularities of a product of

semi-infinite Wilson lines. Wilson-line operators arise upon factorizing an amplitude into

soft and hard modes:

MI(pi, εIR) = SIJren.(γij , εIR)HJ(pi) (1.2)
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A B1
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Figure 3. The 1-1-1-2 web. Each of the two diagrams in this web (A and B) contains two connected

subdiagrams, one of which has a three-gluon vertex.

where the hard function HJ , similarly to the amplitude itself, is a vector in colour space,

while the soft factor, SIJ , for which we give an operator definition below, is a matrix in this

space (we denoted the collection of colour indices schematically by I and J). To identify

the soft modes one introduces Wilson lines as follows: a field Ψ(z) in the time-ordered

product in M, corresponding to the annihilation of an outgoing quark with momentum q,

is replaced by

Ψ(z) → P exp

(
−igs

∫ ∞
z

dxµAµ(x)

)
ψ(z) (1.3)

where the soft gauge field interacts with the Wilson line and decouples from ψ(z). The

integration path in the exponent is along a ray in the direction of quark, and the anti-path-

ordering operator P places colour fields that are closer to the lower limit of integration to

the right; in fig. 1 this is indicated by the direction of the arrow along the Wilson lines4.

In this paper we follow the convention where all momenta pi are incoming, so the outgoing

quark in (1.3) has 4-momentum pi = −q. Using the rescaling symmetry of the Wilson

line we can use the 4-velocity βi, which is proportional to pi, and parametrize the path as

xµ = zµ − tβµi , obtaining5:

Φβi(∞, z) = P exp

(
igsβ

µ
i

∫ ∞
0

dtAµ(z − tβi)
)
, (1.4)

and the replacement of eq. (1.3) takes the form Ψ(z) → Φβi(∞, z)ψ(z). Similar replace-

ments with the same formula for the Wilson line (1.4) apply to other partons where the

relevant representation of the gauge field is dictated in each case by that of the corre-

sponding parton [107, 108], Aµ = AaµT
a
i , where (T ai )αβ = taαβ for a final-state quark (or

an initial-state anti-quark), (T ai )αβ = −taβα for an initial-state quark (or a final-state anti-

quark), and for gluons T is in the Adjoint representation with (T ai )bc = −ifabc.

4We follow the conventions used in Ref. [8]; Appendix A there summarises some useful properties of

Wilson lines.
5Gauge fields are still ordered such that the rightmost ones are those closest to the point z; the Wilson

line is path ordered with regards to βi.
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Soft gauge fields correlate the Wilson lines associated with all partons, while they

decouple from the remaining hard components. The latter (ψ(z) in eq. (1.3)), become part

of the hard coefficient function HJ in eq. (1.2) while the soft function is defined by

S (γij , εIR) ≡ 〈0 |Φβ1 ⊗ Φβ2 ⊗ . . .⊗ ΦβL | 0〉 , (1.5)

where Φβi ≡ Φβi(∞, 0). S (γij , εIR), as hinted by the notation, captures all infrared singu-

larities. Note that we ignored here collinear singularities which occur for massless partons.

For the purpose of the present paper it is convenient to assume that the Wilson-line veloc-

ities are non-lightlike (β2i 6= 0). This will also guarantee that the operator in eq. (1.5) is

multiplicatively renormalizable (see below). The lightlike limit may of course be taken at

the end.

Owing to the rescaling symmetry mentioned above the dependence of the soft function

on the kinematics is only through the Minkowski-space angles between the Wilson lines i

and j. We define

γij ≡
2βi · βj + i0√
β2i − i0

√
β2j − i0

=
2pi · pj + i0√

m2
i − i0

√
m2
j − i0

, (1.6)

where we indicated the prescription for each Lorentz invariant. In the second expression we

restored the dimensionful kinematic variables: pi is the momentum of a heavy parton with

squared mass p2i = m2
i . Related kinematic variables will be defined below (see eq. (2.10)).

In dimensional regularization S presents a rather remarkable relation between the ul-

traviolet and the infrared singularity structure [4] owing to the fact that scaleless integrals

vanish identically. Instead of computing infrared singularities we will compute the renor-

malization of the vertex formed by the Wilson lines in eq. (1.5). This operator renormalizes

multiplicatively [94–97]:

Sren.(εIR, µ) = SUV+IR Z(εUV, µ) , (1.7)

where for lightness of notation we omitted here the dependence on the kinematic variables.

In the absence of any cutoff all radiative corrections vanish and SUV+IR = 1, which implies

Sren.(εIR, µ) = Z(εUV, µ). (1.8)

Thus our task is to compute the renormalization factor Z. To this end we consider the

correlator of eq. (1.5) with an infrared cutoff:

S (γij , αs(µ, ε), ε,m) ≡
〈

0
∣∣∣Φ(m)

β1
⊗ Φ

(m)
β2
⊗ . . .⊗ Φ

(m)
βL

∣∣∣ 0〉 , (1.9)

wherem is a mass scale associated with the (exponential) damping we use for the coupling of

the gauge field to the Wilson lines as defined in eq. (2.1) below. Dimensional regularization

with d = 4−2ε is used in the ultraviolet (ε > 0). After renormalizing the strong coupling, all

remaining ultraviolet singularities should be associated with the multi-Wilson-line vertex

Z as follows:

S
(
γij , αs(µ

2
R), ε,m

)
Z
(
γij , αs(µ

2
R), ε, µ

)
= Sren.

(
γij , αs(µ

2
R), µ,m

)
, (1.10)

– 6 –



where Sren. is finite for ε → 0 and µ is a renormalization scale introduced in defining Z

(this scale is in principle distinct from the renormalization scale of the strong coupling, µR).

The Z factor does not depend on the infrared regulator. The soft anomalous dimension Γ,

which is itself finite, is defined through

dZ

d lnµ
= −ZΓ . (1.11)

As one expects from this evolution equation, the perturbative expansion of Z takes a

particularly simple form upon exponentiation. The exponent of the Z factor may be

written in terms of the coefficients of the anomalous dimension Γ =
∑∞

n=1 α
n
s Γ(n) (and

those of the β function, bn) yielding:

Z = exp

{
1

2ε
Γ(1) αs +

(
1

4ε
Γ(2) − b0

4ε2
Γ(1)

)
α2
s

+

(
1

6ε
Γ(3) +

1

48ε2

[
Γ(1),Γ(2)

]
− 1

6ε2

(
b0Γ

(2) + b1Γ
(1)
)

+
b20
6ε3

Γ(1)

)
α3
s + O(α4

s)

}
.

(1.12)

Note that in contrast to the Wilson loop case (or, equivalently, the case of two Wilson lines

with a colour singlet operator at the cusp), Γ(n), similarly to Z, are matrices and thus even

in a conformal theory where bn = 0 the expression for the exponent involves higher-order

poles in ε governed by commutators. As discussed above, also the Wilson-line correlator S
itself is most naturally expressed as an exponential

S (γij , αs(µ, ε), ε,m) = exp {w} = exp

{ ∞∑
n=1

w(n) αns

}
= exp

∑
n,k

w(n,k) αns ε
n

 . (1.13)

where the coefficients w(n) and w(n,k) collect all non-renormalized webs at a given order in

αs, i.e.

w(n) αns =
∑

n1,...,nL

W
(n)
(n1,...,nL)

. (1.14)

Our strategy will be to make use of the non-Abelian exponentiation theorem and

compute the exponent w as a sum of webs according to eq. (1.14). Having w(n,k) at hand,

we will determine the coefficients of the soft anomalous dimension using the following

relations [104]:

Γ(1) = −2w(1,−1) (1.15a)

Γ(2) = −4w(2,−1) − 2
[
w(1,−1), w(1,0)

]
(1.15b)

Γ(3) = −6w(3,−1) +
3

2
b0

[
w(1,−1), w(1,1)

]
+ 3

[
w(1,0), w(2,−1)

]
+ 3

[
w(2,0), w(1,−1)

]
+
[
w(1,0),

[
w(1,−1), w(1,0)

]]
−
[
w(1,−1),

[
w(1,−1), w(1,1)

]]
.

(1.15c)

We emphasise that while individual web coefficients w(n,k) may depend on the infrared

regularization, Γ(n) are strictly regulator independent.
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In the following sections we explicitly evaluate the integrals corresponding to multiple-

gluon-exchange diagrams in the Feynman gauge and determine their contributions to w(n,k)

through three loops (n = 3). At each order n the soft anomalous dimension coefficient Γ(n)

involves a sum over terms depending on up to (n+ 1) Wilson lines, namely

Γ(n) =

n+1∑
k=2

Γ
(n)
k , (1.16)

where Γ
(n)
2 is the familiar cusp anomalous dimension. As mentioned above we focus here

on these gluon-exchange webs that connect the maximal number of Wilson lines at each

order. Individual webs will be identified by the number of gluon attachments to each of

the Wilson lines. We will compute the 1-1 web at one loop (figure 4), which contributes

to the leading-order cusp anomalous dimension Γ
(1)
2 , the 1-2-1 web at two-loops (upper

diagrams in figure 6), which contributes to Γ
(2)
3 , and the 1-2-2-1 and 1-1-1-3 webs at three

loops (figures 7 and 8, respectively) both contributing to Γ
(3)
4 .

The entire calculation is done in configuration space. In case of gluon-exchange di-

agrams this has an obvious advantage over a momentum-space calculation: one obtains

parameter integrals along the Wilson lines instead of d-dimensional loop integrals. Besides

computing individual integrals we develop in this paper a general strategy for evaluating

and organising the contributions of multiple-gluon-exchange diagrams. We will see that

it is straightforward to combine integrals corresponding to different diagrams in a given

web. We will further see that it is natural to combine the web integrals with the relevant

commutators of lower-order webs corresponding to their subdiagrams according to the

combinations that contribute to the anomalous dimension coefficients, eqs. (1.15). These

combinations, which we refer to as subtracted webs, are singled out by the fact that they

are associated with a single pole, where the effect of subdivergences associated with the

hard-interaction vertex is removed by including the commutators [104]. We will see that

certain symmetry properties are only recovered at the level of these subtracted webs, which

provides an important consistency check of the computation.

The paper is organised as follows: in section 2 we recall the Feynman rules and go

through the calculation of a single gluon exchange between two semi-infinite Wilson lines

to all orders in ε. In section 3 we compute the contributions to the two-loop anomalous

dimension associated with three Wilson lines from the 1-2-1 web (w(2,−1)) and then proceed

to evaluate the corresponding finite term w(2,0) which is relevant for the three-loop anoma-

lous dimension. In section 4 we perform a general analysis of the integrals corresponding

to multiple-gluon-exchange diagrams and determine a basis of functions by which one may

express the contributions to the anomalous dimension from this class of webs. This also

prepares the grounds for the more complex three-loop computations. In section 5 we sum-

marise the results for the contributions of the three-loop webs 1-2-2-1 and 1-1-1-3 to the

anomalous dimension, where the details are relegated to three appendices, appendix A

where we compile the results for all relevant webs, appendix B where the three-loop web

diagrams are expressed in a canonical form as parameter integrals, and appendix C where

the latter are combined with the corresponding commutators of their subdiagrams, obtain-
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ing subtracted webs, and these are evaluated explicitly in terms of the basis of functions

of section 4. In section 6 we discuss our results and conclude.

2 One-loop calculation and the choice of kinematic variables

In this section we recall the one-loop calculation. Although the calculation is essentially

the same as that of the cusp anomalous dimension [4, 16, 83, 84], we present it in some

detail in order to introduce the infrared regulator, the kinematic variables and some further

notation. We will also explain how the integrals are performed, preparing the grounds for

similar higher-loop computations.

Throughout this paper we use an infrared regulator which exponentially suppresses

the coupling to the Wilson lines at large distances from the vertex as follows [103]:

(igs)β
µ
i

∫ ∞
0

dλ (· · · ) −→ (igs)β
µ
i

∫ ∞
0

dλ e−imλ
√
β2
i−i0 (· · · ) (2.1)

where we indicated the relevant prescription6 for β2i → β2i − i0, the same prescription as

in the denominator of eq. (1.6). This is in keeping with the fact that this variable takes

the role of a squared mass, rather than a squared off-shell momentum. Note that thanks

to this prescription the convergence of the λ integral at infinity is guaranteed7 for both

space-like and time-like Wilson lines.

i j

i j

Figure 4. One loop web, where the gluon is emitted between partons i and j, whose kinematic

part is given by eq. (2.11).

Let us consider the calculation of the one-loop diagram in figure 4 with this regulator

in place. We follow the conventions described in the introduction, where the Wilson lines

6In the calculation we will eventually rescale the integration variable to absorb the factor
√
β2
i − i0. In

this case the prescription will be carried by the regulator m→ m− i0.
7To verify this note that the analytic continuation reads β2

i − i0 = |β2
i | exp(−iθ) where θ > 0. One has

θ = ε → 0+ for time-like Wilson lines, while θ = π for space-like lines. In the former case the exponent

in eq. (2.1) is −imλ
√
|β2

i |(1 − iε/2) and in the latter it is −imλ
√
|β2

i |(−i), so in both cases one finds

exponential suppression in the λ→∞ limit.
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are defined in eq. (1.4) and the velocities are incoming. We denote the one-loop diagram

with a gluon exchanged between legs i and j by

W
(1)
(i,j) = Ti · Tj F (1)

ij (γij , µ
2/m2, ε) , (2.2)

where we have written the colour factor in terms of the generators of the two lines, defining

Ti · Tj =
∑

a T
(a)
i T

(a)
j , where Ti and Tj may belong to different representations. The

Feynman rule for the configuration-space gluon propagator in the Feynman gauge in d =

4− 2ε dimensions is (cf. appendix A in Ref. [7])

Dµν(x) = µ2ε
∫

ddk

(2π)d
e−ikx

−i gµν
k2 + iε

= −N gµν
(
−x2 + iε

)ε−1
,

where N ≡ µ2ε Γ(1− ε)
4π2−ε

, ε > 0 .

(2.3)

Note that we included the dimensional regularization scale in the propagator, making it

dimensionless. Parametrizing the positions along the two Wilson lines i and j by s and

t respectively, the one-loop calculation reduces to a parameter integral over the gluon

propagator (2.3) between the two points sβi and tβj , with exponential damping associated

with the infrared-regulated interaction vertices (2.1):

F (1)
ij

(
γij ,

µ2

m2
, ε

)
= g2s N βi · βj

∫ ∞
0
ds

∫ ∞
0
dt
(
− (sβi − tβj)2 + iε

)ε−1
e
−ims
√
β2
i−i0−imt

√
β2
j−i0

=
g2s
2
N γij

∫ ∞
0

dσ

∫ ∞
0

dτ
(
− σ2 − τ2 + γijστ + iε

)ε−1
e−i(σ+τ)(m−i0)

= κΓ(2ε) γij

∫ 1

0
dxP (x, γij) ,

(2.4)

where in the second line we rescaled8 the integration variables such that σ = s
√
β2i − i0

and τ = t
√
β2i − i0 and in the third line we defined

κ ≡ −
(
µ2

m2

)ε
g2s
2

Γ(1− ε)
4π2−ε

, (2.5)

and integrated over the distance scale to obtain an ultraviolet divergence. In doing so we

introduced the following integration variables:

λ = σ + τ and x =
σ

σ + τ
, (2.6)

where the semi-infinite parameter λ captures the overall distance of the gluon from the cusp,

while x ∈ [0, 1] represents the emission angle, where the two collinear limits correspond to

the boundaries x = 0 and x = 1. The λ dependence scales out of the propagator and the

8Note that for spacelike Wilson lines,
√
β2
i = −i

√
|β2

i |, one may simply define σ = s
√
|β2

i | and τ =

t
√
|β2

j |, and then identify (2βi · βj + iε)/
√
|β2

i ||β2
j | = −γij , consistently with the final result in eq. (2.4).
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λ integral generates an ultraviolet pole Γ(2ε) ' 1
2ε . This leaves only x dependence in the

propagator-related function,

P (x, γij) ≡
[
x2+(1−x)2−x(1−x)γij−iε

]ε−1
=
[
1−4x(1−x)

(
1

2
+
γij
4

+ iε

)]ε−1
. (2.7)

In order to perform the final integration over x in eq. (2.4) it is convenient to express

the integral in terms of αij , defined by

− γij = αij +
1

αij
. (2.8)

Note that this definition inherently introduces an inversion symmetry, αij → 1/αij , which

implies that one can either choose |αij | ≤ 1 or |αij | ≥ 1, as both are describing the same

kinematics. Throughout this paper we shall assume the former, so all relevant values of

αij are within the unit circle.

Let us now consider the coefficient of the 1/ε pole in eq. (2.4), which is regularization-

independent, in term of αij :

F (1,−1)(γij) = −g
2
sγij

16π2

∫ 1

0
dx P0(x, γij)

=
g2s

16π2

(
αij +

1

αij

)∫ 1

0
dx

1

x2 + (1− x)2 + x(1− x)(αij + 1/αij)− iε

= − g2s
16π2

1 + α2
ij

1− α2
ij

∫ 1

0
dx

(
1

x− 1
1−αij

− i0
− 1

x+
αij

1−αij
+ i0

)

= − g2s
16π2

2
1 + α2

ij

1− α2
ij

ln (αij + i0)

(2.9)

where P0(x, γij) is the ε = 0 limit of P (x, γij) of eq. (2.7). In the third line we performed

a partial-fraction decomposition of the integrand, obtaining a d log form. The final result

in eq. (2.9) is the familiar one-loop cusp anomalous dimension (see e.g. [4, 25, 30]), often

expressed in terms of the Minkowski space cusp angle ξij :

Γ(1)αs = −2w(1,−1)αs = −2Ti · Tj F (1,−1)(γij)

F (1,−1)(γij) =
g2s

16π2

[
−2 ln(αij)

1 + α2
ij

1− α2
ij

]
=

g2s
16π2

[
2 ξij coth(ξij)

]
where ξij = cosh−1(−γij/2) = lnαij .

(2.10)

We identify αij , which will be our preferred kinematic variable, as the exponential of the

cusp angle between the two lines, αij = exp ξij . We note that the αij → 1/αij symmetry

mentioned earlier corresponds to ξij → −ξij . As usual, the iε prescription of the propagator

in eq. (2.3) dictates the sign of the imaginary part of αij+i0 in eq. (2.9), which is important

when αij is negative. From now on we shall not write explicitly the imaginary part; it can

always be recovered taking αij → αij + iε with ε > 0.
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1−1 0

Figure 5. The analytic structure of the one-loop result in the complex α plane – a logarithmic

branch cut along the negative real axis – shown together with a contour describing the values of α

for real values of γ: the α ∈ (0, 1) region corresponds to space-like kinematics (one incoming and

one outgoing partons) where γ varies between −∞ and −2; next, the region of complex α with a

positive imaginary part corresponds to the Euclidean region where −2 < γ < 2; and finally the

region where α is near the branch cut, α = αr + iε with αr ∈ (−1, 0) and ε > 0, corresponds to

time-like kinematics.

figure 5 describes the values9 α takes in the complex plane for real values of γ. There

are two physical regions where α is real: positive α corresponds to space-like kinematics,

while negative α to time-like kinematics. Analytically continuing from one to the other

can be done at fixed |α|, with α having a positive imaginary part. As can be verified

using eq. (1.6) the limits α → ±1 are collinear limits: for α = −1 (γ = 2) the two semi-

infinite Wilson lines merge into one carrying the sum of the colour charges, while for α = 1

(γ = −2) they join to create a single infinite line. Physically, α → −1 corresponds to

heavy-quark production near threshold, a situation where there are Coulomb singularities,

while α → 1 corresponds to forward scattering, as occurs in the high-energy limit. Note

that in the latter case we do not expect a singularity and indeed the pole of the rational

prefactor at αij = 1 is compensated in eq. (2.8) by the zero of the logarithm. Finally the

limit α → 0 (|γ| → ∞) is the lightlike limit. In this case the logarithmic divergence in

eq. (2.9) corresponds to the extra collinear singularity characteristics of massless partons.

For the multi-loop analysis we will need the single-gluon-exchange diagram computed

to higher orders in the dimensional regularization parameter ε. Subleading terms in this

expansion enter the expressions for the higher-orders coefficients Γ(n) in eq. (1.15). Keeping

the full ε dependence in eq. (2.4), the kinematic factor takes the form:

F (1)
ij (γij , µ

2/m2, ε) = κΓ(2ε) γij

∫ 1

0
dxP (x, γij)

= κΓ(2ε) γij 2F1

(
[1, 1− ε], [3/2],

1

2
+
γij
4

)
.

(2.11)

9Here and below we will be using α and γ to denote αij and γij , respectively, whenever specific line

indices are not needed.
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The leading term in the ε expansion of eq. (2.11) coincides of course with eq. (2.9). It is

straightforward to expand the hypergeometric function in (2.11) to subleading orders in ε.

To this end we recall the formula from ref. [109] (eq. (4.24) there continues to O(ε3)):

2F1

([
1 + a1ε, 1 + a2ε

]
,
[3

2
+ fε

]
, z

)
=

1 + 2fε

2z

1− α
1 + α

[
ln(α)

+ ε

(
2(f − a1 − a2)(Li2(−α) + ln(α) ln(1 + α))

− 2f(Li2(α) + ln(α) ln(1− α)) +
a1 + a2

2
ln(α)2 + ζ2(3f − a1 − a2)

)
+ · · ·

]
,

(2.12)

where z = 1/2 + γ/4 and

α =
1−

√
z/(z − 1)

1 +
√
z/(z − 1)

=
1−

√
γ+2
γ−2

1 +
√

γ+2
γ−2

. (2.13)

The inverse relation between γ and α is given in eq. (2.8) above. For the expansion of

eq. (2.11) we use eq. (2.12) with a2 = −1 and a1 = f = 0 getting:

γij 2F1

(
[1, 1− ε], [3/2],

1

2
+
γij
4

)
= 2 r(αij)

(
R0(αij) + εR1(αij) + ε2R2(αij) +O(ε2)

)
(2.14)

where the rational factor is

r(αij) ≡
1 + α2

ij

1− α2
ij

, (2.15)

and the pure transcendental functions of the first three orders are:

R0(α) = ln(α)

R1(α) = 2Li2(−α) + 2 ln(α) ln(1 + α)− 1

2
ln2(α) + ζ2

R2(α) = 2Li3

(
α

1 + α

)
− 2Li3

(
1

1 + α

)
− ln(α)

[
Li2

(
1

1 + α

)
+ Li2

(
α

1 + α

)]
+

1

6
ln3(α) .

(2.16)

We comment that an alternative to writing the general ε integral as a hypergeometric

function and then expanding, one may expand under the integral in eq. (2.4), defining

Rn(α) via10

F (1,n−1)
ij (γij , µ

2/m2) =
κ

2
γij

∫ 1

0
dx

1

n!

lnn
(
x2 + (1− x)2 − x(1− x)γij

)
x2 + (1− x)2 − x(1− x)γij

= κ r(αij)Rn(αij) .

(2.17)

Note that the notation here is such that n is the power of the logarithm; the function Rn
itself is of weight n + 1. Note also that upon assigning ε weight −1, the entire expansion

10Throughout the paper we refrain from expanding the overall coefficient κ (as well as the overall Γ(2nε))

in order not to clutter the expressions.
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on the r.h.s. of eq. (2.14) is of uniform weight (1). These integrals, along with similar

integrals which occur in higher-order webs, will be important in determining the anomalous

dimension at higher loop orders. For easy reference these definitions are all complied in

appendix A.

A final comment is due concerning the choice we made to use α as the default kinematic

variable, as opposed to γ for example. To this end it is useful to consider the α→ −1 limit

which corresponds to heavy-quark production near threshold. In this limit the physics is

most transparent when expressed in terms of the velocity of the heavy quark, which is given

by v =
√

1− 4m2/s and tends to zero in this limit. Before making any approximation the

relation is α = −(1 − v)/(1 + v) (see eq. (4.11)), which indeed tends to −1 for v → 0, up

to power terms, while the rational factor in eq. (2.9) yields r(α) = (1 + v2)/(2v), which

is linearly divergent for small v, as expected. When using the variable α this singularity

simply translates into a simple pole at α→ −1, however according to eq. (2.13) v =
√

γ−2
γ+2

implying that in terms of γ we obtain a square-root singularity at γ → 2, rather than a

simple pole. We see that in terms of α we have a simple analytic structure, which is not

the case for γ. A more complete picture of the analytic structure will be presented in the

following sections, after computing the two-loop diagrams. It will transpire that α is a

convenient kinematic variable.

3 Two-loop calculation and the notion of a subtracted web

In this section we focus on the two-loop calculation of webs connecting three Wilson lines

(we will not be concerned with higher-order corrections to the cusp anomalous dimension

itself, which was computed to two-loops in refs. [4, 16]). The relevant diagrams are shown

in figure 6. The figure shows the two relevant types of webs, the 1-2-1 web which comprises

two diagrams, each of which has two individual gluon exchanges, and the connected three-

gluon-vertex diagram, which is a web on its own. Our focus here is on the former11 and

we carry out the calculation to O(ε0) as necessary for the computation of the three-loop

anomalous dimension. The O(ε−1) term of this web, which contributes to the two-loop

soft anomalous dimension, has already been computed in refs. [26, 31, 33] and we confirm

these results.

3.1 Computing the 1-2-1 web

The 1-2-1 web contribution reads [101]:

W
(2)
(1,2,1) =

1

2
(C(2a)− C(2b)) (F(2a)−F(2b))

= −1

2
ifabcT ai T

b
j T

c
k (F(2a)−F(2b))

(3.1)

where the notation (2a) and (2b) refers to the two diagrams in figure 6, respectively. In

eq. (3.1) we incorporated the relevant mixing matrix and used the colour algebra to write

11The O(ε−1) term of the latter has been computed analytically in ref. [31] in momentum space and

numerically, in ref. [26, 33] in configuration space. An analytic calculation in configuration space will be

presented separately [110].
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a b

Figure 6. Two-loop graphs connecting three Wilson lines. The two diagrams at the top, (2a) and

(2b) respectively, form together a 1-2-1 web, which we denote by w
(2)
121 or alternatively w

(2)
ijjk, where

the leg j has two gluon emissions connected respectively to legs i and k. The connected diagram

at the bottom is a web by itself, denoted by w
(2)
ijk; 3g. The two webs have the same colour factor.

the commutator on line j using the structure constants, exhibiting the connected nature

of the colour factor. Next we need to compute the kinematic factors. Employing the

configuration-space Feynman rules detailed in the previous section we have:

F (2)(2a) = g4s N 2 (βi · βj)(βj · βk)
∫ ∞
0

ds du dt1 dt2 θ(t1 > t2)(
− (sβi − t1βj)2

)ε−1(
− (uβk − t2βj)2

)ε−1
e
−im

(
s
√
β2
i−i0+u

√
β2
k−i0+(t1+t2)

√
β2
j−i0

)
,

(3.2)

and similarly with θ(t1 < t2) for diagram (2b). Rescaling the line-integral parameters such

that s
√
β2i − i0 = σ and t1,2

√
β2j − i0 = τ1,2 and u

√
β2k − i0 = µ yields

F (2)(2a) =
g4sN 2

4
γijγjk

∫ ∞
0

dσ dµ dτ1 dτ2 θ(τ1 > τ2)(
− σ2 − τ21 + γijστ1

)ε−1 (
− µ2 − τ22 + γjkµτ2

)ε−1
e−i(m−i0)(σ+τ1+τ2+µ) .

(3.3)

Repeating now the change of variables of eq. (2.6) for each of the gluons, namely

λ1 = σ + τ1 and x =
τ1

σ + τ1
,

λ2 = µ+ τ2 and z =
τ2

µ+ τ2
,

followed by

λ = λ1 + λ2 and ω =
λ1

λ1 + λ2
,
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we may integrate over the overall distance parameter λ obtaining an ultraviolet singularity:

F (2)(2a) = κ2Γ(4ε) γijγjk

∫ 1

0
dx

∫ 1

0
dzP (x, γij)P (z, γjk)∫ 1

0
dω
(
ω(1− ω)

)2ε−1
θ

(
ω

1− ω
>
z

x

)
,

(3.4)

where P (x, γij) is defined in eq. (2.7) above. The normalization factor here is written in

terms of κ, defined in eq. (2.5). We obtain a similar expression for diagram (2b), where

the Heaviside function is θ
(

ω
1−ω <

z
x

)
.

Performing the integral over ω in the second line of eq. (3.4) we get:

Iω(2a) =

∫ 1

0
dω
(
ω(1− ω)

)2ε−1
θ

(
ω

1− ω
>
z

x

)
=
(x
z

)2ε 1

2ε
2F1

(
[4ε, 2ε], [1 + 2ε],−x

z

)
=
(x
z

)2ε 1

2ε

(
1 + 8ε2Li2(−x/z) +O(ε3)

)
=

1

2

1

ε
− ln

( z
x

)
+
(

4Li2

(
−x
z

)
+ ln2

( z
x

))
ε+O

(
ε2
)
,

(3.5)

and similarly for the integral corresponding to diagram (2b) we obtain:

Iω(2b) =

∫ 1

0
dω
(
ω(1− ω)

)2ε−1
θ

(
ω

1− ω
<
z

x

)
=

1

2
ε−1 + ln

( z
x

)
−
(

4 Li2

(
−x
z

)
+ ln2

( z
x

)
+ 4ζ2

)
ε+O

(
ε2
)
.

(3.6)

Therefore, for the kinematic factor of the web we obtain:

F (2)(2a)−F (2)(2b) = 2κ2Γ(4ε)γijγjk

∫ 1

0
dx

∫ 1

0
dzP (x, γij)P (z, γjk)φ2(x, z; ε) , (3.7)

where we denoted the kernel of the integral by

φ2(x, z; ε) = ln
x

z
+
(

4Li2

(
−x
z

)
+ ln2

(x
z

)
+ 2ζ2

)
ε+O(ε2) . (3.8)

Here the double pole cancels between the two diagrams, as expected12 [104]. Finally,

substituting this into eq. (3.1) we obtain:

W
(2)
(1,2,1)(αij , αjk) = −ifabcT ai T

b
j T

c
k κ

2 Γ(4ε) γijγjk

∫ 1

0
dx

∫ 1

0
dzP (x, γij)P (z, γjk)φ2(x, z; ε) .

(3.9)

We may now expand the result in ε writing

W
(2)
(1,2,1) = w

(2)
121 α

2
s =

(
1

ε
w

(2,−1)
121 + w

(2,0)
121 +O(ε)

)
α2
s.

12We recall that the cancellation of the leading poles has been shown to be a general property of webs

based on their renormalization properties.
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To determine the contribution of this web to the two-loop anomalous dimension we only

need the coefficient w
(2,−1)
121 of the 1/ε pole of (3.9). The required integrals are of the form:

γij

∫ 1

0
dx ln(x)P0(x, γij) ≡ r(αij)

(
−S1(αij)

2

)
= r(αij)

[
−2Li2(αij) +

1

2
ln2(αij)− 2 ln(1− αij) ln(αij) + 2ζ2

]
,

(3.10)

with the usual relation (2.8) between γij and αij , and where the rational function r(αij) is

defined in eq. (2.15), as at one loop. The fully-integrated result at O(α2
s ε
−1) is:

w
(2,−1)
121 (αij , αjk) =− ifabcT ai T

b
j T

c
k

(
1

4π

)2

r(αij)r(αjk)
(

ln(αij)S1(αjk)− ln(αjk)S1(αij)
)
,

(3.11)

in agreement with refs. [26, 31, 33].

3.2 Two-loop soft anomalous dimension and the subtracted web

Recall that at one loop we got, according to eq. (2.10),

Γ(1)αs = Ti · Tj
αs
π
r(αij) ln(αij) . (3.12)

Let us now examine contributions to Γ(2) involving the colour indices of three lines, which

we denote by Γ
(2)
3 . According to eq. (1.15) there are three sources of such contributions: the

1-2-1 web given by eq. (3.11), the commutator term and the three-gluon-vertex diagram;

all three have the same colour factor ∝ fabcT ai T
b
j T

c
k . For the three-gluon-vertex diagram

we have [26, 31, 33, 110]:

w
(2,−1)
3g = −ifabcT ai T

b
j T

c
k 2

(
1

4π

)2

r(αij) lnαij ln2 αjk . (3.13)

Let us now evaluate the commutator
[
w(1,−1), w(1,0)

]
using the results of eq. (2.17).

We have:[
w(1,−1)αs, w

(1,0)αs

]
=

[
F (1,−1)
ij Ti · Tj + F (1,−1)

jk Tj · Tk, F
(1,0)
ij Ti · Tj + F (1,0)

jk Tj · Tk

]
= T ai

[
T aj , T

b
j

]
T bk

(
F (1,−1)
ij F (1,0)

jk −F (1,−1)
jk F (1,0)

ij

)
= −4ifabcT ai T

b
j T

c
k

(
g2s

16π2

)2

r(αij) r(αjk)
(

ln(αij)R1(αjk)− ln(αjk)R1(αij)
)

(3.14)

where R1(α) is given by eq. (2.16) above.

Given the similar structure of the commutator and 1-2-1 web contributions, both

having the same rational factor r(αij) r(αjk), it is natural to combine them, writing the
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anomalous dimension as

Γ
(2)
3 = −4w

(2,−1)
3g −4w

(2,−1)
121 − 2

[
w(1,−1), w(1,0)

]
︸ ︷︷ ︸

−4w
(2,−1)
121

(3.15)

and then:

w
(2,−1)
121 = w

(2,−1)
121 +

1

2

[
w(1,−1), w(1,0)

]
= − ifabcT ai T

b
j T

c
k

(
1

4π

)2

r(αij) r(αjk)
(

ln(αij)U1(αjk)− ln(αjk)U1(αij)
)
,

(3.16)

where we defined the following transcendental function:

U1(α) = S1(α) + 2R1(α) . (3.17)

We shall refer to w
(2,−1)
121 as the 1-2-1 subtracted web. More generally a subtracted web

will be defined as the contributions to the anomalous dimension from the web and all the

commutators terms comprised of its subdiagrams. Using the previous results for R1 and

S1, defined respectively in eqs. (2.16) and (3.10), together with the identity:

Li2(α) + Li2(−α) =
1

2
Li2(α

2) ,

we get

U1(α) = S1(α) + 2R1(α) = 2Li2(α
2) + 4 ln(α) ln(1− α2)− 2 ln2(α)− 2ζ2 . (3.18)

Eq. (3.16) with (3.18) agrees with both the momentum-space calculation of eq. (23) in

ref. [31] and the configuration space one in ref. [26, 33].

Note that given the similar structure of the integrals for the web (3.9) and commutator

(3.14) (see eqs. (A.6)):[
w(1,−1), w(1,0)

]
= −ifabcT ai T

b
j T

c
k

(
1

4π

)2 ∫ 1

0
dxdz p0(x, αij) p0(z, αjk)

×
(

ln q(z, αjk)− ln q(x, αij

) (3.19)

where we defined

p(x, α) ≡ γP (x, γ) =
γ

(q(x, α))1−ε

where q(x, α) = x2 + (1− x)2 − x(1− x) γ; −γ = α+
1

α

(3.20)

and p0(x, α) = limε→0 p(x, α), we can also form the subtracted web combination at the

level of the integrand, namely

w
(2,−1)
121 (αij , αjk) = −ifabcT ai T

b
j T

c
k

(
1

4π

)2 ∫ 1

0
dx dz p0(x, αij) p0(z, αjk)φ

(0)
2 (x, z) , (3.21)
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where

φ
(0)
2 (x, z) = ln

x

z
+

1

2

(
ln q(z, αjk)− ln q(x, αij

)
(3.22)

is the subtracted web kernel. Formulating subtracted webs as integrals over p0(x, α) factors

would be the starting point for our general analysis in the next section. We will see that it

is useful to postpone the x-type integrations until after having formed the subtracted webs

combination.

3.3 Inversion symmetry and the forward limit

Let us now return to the inversion symmetry mentioned above. We will also comment on

the connection of this property with the behaviour of the result in the forward limit.

The one-loop (cusp) anomalous dimension, of eq. (3.12) is symmetric under inversion,

αij → 1/αij , as must be the case owing to the definition of αij in eq. (2.8). This sym-

metry is realised through the fact that both the rational function r(αij) =
1+α2

ij

1−α2
ij

and the

transcendental one, ln(αij), are separately odd under inversion.

Consider now the two-loop result presented above. Using the inversion formula:

Li2(1/x) = −Li2(x)− 1

2
ln2(−x)− ζ2 (3.23)

in eqs. (3.10), (2.16) and (3.18) we find:

S1(1/α) = −S1(α) , R1(1/α) = −R1(α) , U1(1/α) = −U1(α) . (3.24)

We see that the situation here is similar that at one loop: in particular, in w
(2,−1)
121 (αij , αjk)

of eq. (3.16) both the rational function and the transcendental function are odd under in-

version of each of the α variables, making the final result symmetric, as expected. Note that

the inversion symmetry is realised differently for the three-gluon vertex contribution w
(2,−1)
3g

of eq. (3.13). This function has just one rational factor r(αij): there is none associated

with αjk. Here the transcendental function ln2 αjk is by itself even under inversion.

Consider now the the forward-scattering (or straight-line) limit where αij → 1. In

this limit the rational factor r(αij) is singular, and since physically there should not be

any singularity there, one expects that the transcendental function should vanish. We now

observe that when the function is odd under inversion – as occurs at one loop in eq. (3.12)

or for two-loops functions in eq. (3.24) – vanishing at αij → 1 follows automatically. We

can also use the relation

Li2(1− x) = −Li2(x)− ln(1− x) ln(x) + ζ2

to express the dilogarithmic function U1(α) in eq. (3.18) as

U1(α) = −2Li2(1− α2)− 2 ln2(α) , (3.25)

where each of the terms vanishes for α → 1. In the next section we will see how these

properties generalise to the entire class of multiple-gluon-exchange webs.
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3.4 Integrating to order ε0

We may now proceed to perform the integrals required for the O(ε0) term of w
(2)
121, which

will be needed for the three-loop anomalous dimension. According to eq. (3.9) with φ2
of eq. (3.8), these include for example the integral

∫ 1
0 dx ln2(x)p0(x, α), where p0(x, α) is

defined following eq. (3.20); this integral is given by eq. (A.12). In addition the O(ε0)

calculation requires integrals such as eq. (A.16) involving ln(q(x, α) from the expansion of

p(x, α) to higher order in ε. These integrals are all summarised in appendix A.

On the face of it, examining eq. (3.9) with (3.8) one would conclude that also the

following integral is required:∫ 1

0
dx

∫ 1

0
dz Li2

(
−x
z

)
p0(x, αij)p0(z, αjk) . (3.26)

Here, in contrast to the other integrals we encountered, the dilogarithm appearing in the

kernel couples the two gluons and prevents the factorization of the result into polylog-

arithms of αij and those of αjk. Indeed, performing this integral we obtain a rather

complicated function, which can be expressed in terms of Goncharov multiple polyloga-

rithm [111, 112], some of which depend on both cusp angles, rather than a sum of products

of polylogarithm of a single cusp angle. Interestingly, the integral of eq. (3.26) is actually

not needed for the three-loop webs we are considering: as we shall see below all dilogarithms

cancel out in the integrand in combinations of webs and commutators of their subdiagrams,

so if we postpone the integration until after subtracted web combinations are formed, mul-

tiple polylogarithms never arise. As we discuss in the following section this cancellation

is not accidental, but rather points to a general structure of multi-gluon-exchange webs.

The simplification achieved by these cancellations is a significant incentive for arranging

the calculation in terms of subtracted webs.

4 Properties of functions appearing in multi-gluon-exchange webs

The functions we have encountered through two loops have a rather simple analytic struc-

ture and several symmetries which call for interpretation. The purpose of this section is

to analyse these properties in order to gauge how general they are, gain some physical

understanding and prepare the grounds for the three-loop calculation that follows.

4.1 The structure of multiple-gluon-exchange integrals

Let us examine the kinematic dependence of multiple-gluon-exchange webs. We will analyse

the general form of the corresponding integrals, their analytic structure and their symme-

tries. The most obvious among these is the inversion symmetry, α → 1/α, which is an

immediate consequence of the definition of α in eq. (2.8). We have already seen that the

transcendental functions associated with gluon-exchange diagrams at one and two loops

are odd under inversion, compensating the fact that the rational factor associated with

each exchange, r(α) of eq. (2.15), is itself odd, and making the anomalous dimension even,

as it must be. We will see that for the class of webs we are concerned with, namely those
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involving multiple-gluon-exchange diagrams (without any three of four gloun vertices) this

property generalises to any order.

The first observation is that the rational functions in these webs can be determined

without doing any integrals, and they simply amount to a factor of r(αij) for each gluon

exchange between lines i and j. Recall that the Feynman rules for each gluon exchange

involve a propagator and two parameter integrals corresponding to the positions at which

the gluon attaches to the two Wilson lines. Upon using the parametrization of eq. (2.6)

we see that each gluon exchange gives rise to precisely one factor of p(x, α), defined in

eq. (3.20), along with a corresponding parametric integral over x, representing the gluon

emission angle. The overall distance of this gluon from the vertex, which has been scaled out

of the propagator, can be integrated over along with similar variables associated with the

other gluons, where the limits of integration for any particular web diagram are determined

by the order of attachments of the gluons to a given Wilson line. The general structure of

these integrals is:

F ∼ g2ns
∫ ∞
0

dλ1 dλ2 . . . dλn

n∏
k=1

λ2ε−1k

×
∫ 1

0
dx1 dx2 . . . dxnΘ ({xi/xj , λi/λj}) e−i(m−i0)

∑n
k=1 λk

n∏
k=1

p(xk, αk)

(4.1)

where the function Θ ({xi/xj , λi/λj}) denotes a product of Heaviside functions of the form

θ(xiλi > xjλj), which represent the order of gluon emissions along each of the Wilson lines.

The integral over the overall distance scale of the n gluon exchanges, λ ≡
∑n

k=1 λk, yields

an ultraviolet divergence of the form Γ(2nε) and the remaining (n− 1) integrals involving

Θ yield a pure polylogarithmic function13 of weight (n − 1). The latter function, which

we call the kernel and denote by φn−1, depends solely on the x-type angular variables

of which there are n. To be precise eq. (4.1) implies that the kernel may only involve

polylogarithms of ratios such as xi/xj and Heaviside functions of the form θ(xi > xj). In

webs where n gluons connect (n+ 1) Wilson lines no Heaviside functions remain after the

{λi} integrations. In contrast, in more entangled webs, where n gluons connect fewer than

(n+ 1) Wilson lines, some Heaviside functions may appear in the kernel.

The final integration for a given n gluon exchange diagram takes the form:

F (n) ∼ κnΓ(2nε)

∫
dx1dx2 . . . dxn φn−1(x1, x2, . . . , xn; ε)

n∏
k=1

p(xk, αk)

= κnΓ(2nε)

(
n∏
k=1

r(αk)

)
sn({αk}; ε)

(4.2)

13To see why such integrals yield a polylogarithmic function at any order in ε, note that in 4-dimensions the

λk integrals in eq. (4.1) are of the d log form, dλk/λk. In d-dimensions the integrand has extra logarithms,

which raise the weight of the polylogarithm by one per power of ε. The limits of integration, which depend

on the order of attachments, determine the specific polylogarithmic function that is obtained. An example

was given in eq. (3.4) at two-loops and we will see further examples in appendix B.
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where k runs over the n gluons. To perform the xk integrals we may expand the integrand

in powers of ε and integrate term by term. Contributions to this expansion arise in general

from the kernel φn−1 and from the powers of the propagators, the latter yielding

p(x, α) = p0(x, α)

∞∑
j=0

εj

j!
lnj q(x, α) , (4.3)

where q(x, α) is defined in eq. (3.20). Having made this expansion we readily see how the

final expression in eq. (4.2) is obtained: the rational functions r(αk) simply emerge upon

partial fractioning each p0(xk, αk) as in eq. (2.9), while the resulting integral sn is a pure

transcendental function of weight (2n− 1) depending on all the kinematic variables. Note

that beyond that overall Γ(2nε) singularity which we factored out, this integral may have

up to (n−1) extra powers of 1/ε; such a maximal power is attained for maximally reducible

diagrams, where each gluon can be independently contracted towards the hard-interaction

vertex. As before, ε−1 is assigned a weight 1. At any order in the ε expansion sn is again

a polylogarithmic function of uniform weight.

We observe that integrals of the form of eq. (4.2) with the same product of p(xk, αk),

albeit with different kernel functions, are associated to any individual diagram in a web.

The contribution of the web as a whole to the anomalous dimension, w(n,−1), is simply

a linear combination of the integrals of the various diagrams expanded to O(ε−1), with

numerical coefficients dictated by the corresponding web mixing matrix. Furthermore, the

very same integrals appear in commutator contributions to the anomalous dimension at

order n which are formed by webs defined by subdiagrams of the web under consideration.

Thus the subtracted web w(n,−1) also has the form of eq. (4.2) with the same rational

factor.

Given the common structure, it is most natural to combine the web diagrams at the

level of the integrand of eq. (4.2), yielding a web kernel, and similarly, include the relevant

commutator terms, defining a subtracted web kernel. In the 1-2-1 case the combined integral

is given by eq. (3.7) and the corresponding web kernel is given in eq. (3.8); the subtracted

web is given by eq. (3.21). We now see that the general structure, summarised by eq. (4.2),

is obtained for any multiple-gluon-exchange web. We will see further examples of this at

three loops in what follows (see appendix B).

The conclusions from this analysis can be summarised as follows:

• A given multiple-gluon-exchange diagram, and likewise the web and the correspond-

ing subtracted web, has a kinematic dependence of the form of eq. (4.2) where the

rational function is simply a product of n factors of r(α) of eq. (2.15) with the relevant

α = αij .

• The latter rational factor is multiplied by a transcendental function, sn({αk}; ε) of

weight (2n−1), potentially having extra polesO(ε−k) with k ≤ (n−1). The coefficient

of ε−k in this function is a polylogarithmic function of weight (2n − 1 − k); the

contribution to the anomalous dimension, w(n,−1), corresponding to k = 0, has weight

(2n− 1). This class of functions is amenable to the symbol analysis [111–114], which

we will use below.
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• Given the rational factor, the symmetry of the anomalous dimension under inversion,

α → 1/α, dictates how sn({αk}; ε) transforms. This in turn relates to the forward

limit αk → 1 where sn({αk}; ε) is expected to vanish.

4.2 Crossing symmetry and the symbol alphabet

Let us now turn to discuss another symmetry property, which is far less obvious. We note

that U1(α), in eq. (3.18), or equivalently in eq. (3.25), appears to be a function of α2.

That is, assuming at this stage that α > 0 (see below!) one may replace 2 lnα by lnα2

to obtain a function of α2. It is evident that neither the 1-2-1-web function S1(α) nor the

commutator function, R1(α), have such a property, while their combination entering the

anomalous dimension, the subtracted web, does:

U1(α) = S1(α) + 2R1(α) =
1

2
S1(α

2) , ∀α > 0 . (4.4)

The fact that the subtracted web appears to be a function of α2, rather than just a

function of α can be understood on general grounds, as we shall see below. Before turning

to the explanation, it should be pointed out that a related observation was recently made

in refs. [83–85]. It was found there that the angle-dependent cusp anomalous dimension

in N = 4 supersymmertic Yang-Mills can be expressed as a function of α2 through three

loops, and at least for multiple-gluon-exchange diagrams this persists through six loops.

Our observation above generalises this to the three-leg soft anomalous dimension at two-

loops.

The fact that these functions appear to be functions of α2
ij calls for considering the

symmetry under,

αij → −αij . (4.5)

Physically such a transformation is indeed interesting since it is associated with crossing

symmetry: it may be realised by reversing the 4-velocity of one of the partons, e.g. βi →
−βi keeping the other one (βj) unchanged (it follows from eq. (1.6) that this amounts to

γij → −γij , and therefore to αij → −αij). Thus, it corresponds to a relation between

spacelike kinematics with αij > 0, where the two Wilson lines i and j correspond to two

partons one of which belonging to the initial state and one to the final state, and timelike

kinematics with αij < 0, where the two partons are both in the initial state or both in the

final state. For example, the amplitude where i is an incoming quark and j is an outgoing

quark, as in deep-inelastic scattering, may be related by eq. (4.5) to one where i is an

outgoing antiquark (while j is still an outgoing quark) as in quark anti-quark production.

Recall that the observation that U1 is a function of α2 in eq. (4.4) relied on α being

positive. Specifically it relies on replacing 2 lnα by lnα2 which does not hold for negative α.

The correct analytical continuation of U1(α) to complex α, and to the timelike axis in

particular, is given by eq. (3.18), where α is in the upper half of the complex plane (see

figure 5). For α < 0:

ln(α) = ln(α+ i0) = ln(|α| eiπ) = ln |α|+ iπ (4.6)
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which is different from 1
2S1(α

2). Indeed physically we expect such an imaginary part to

be generated for α < 0 where the two partons are both in the final (or both in the initial)

state. A similar logarithm, generating an iπ term, appears already at one-loop in eq. (3.12).

We are then led to conclude that, strictly speaking, there is no αij → −αij symmetry: this

symmetry is broken by iπ terms from the analytical continuation.

The precise statement is that the crossing symmetry of eq. (4.5) is realised at the

level of the symbol. The symbol [81, 111–114] represent the branch point structure of the

function, but, in contrast to the function itself, it is not sensitive to the kinematic region

(or to the way the cuts are routed) and specifically it eliminates iπ terms:

S [ln(−α)] = ⊗α = S [ln(α)] . (4.7)

Thus in the one-loop case the crossing symmetry is trivially realised at the symbol level.

In the two-loop case we have,

S [S1(α)] = 4α⊗ (1− α)− 2α⊗ α (4.8a)

S [R1(α)] = 2α⊗ (1 + α)− α⊗ α (4.8b)

neither of which admits the symmetry, while the combination (3.17) that appears in the

anomalous dimension, does:

S [U1(α)] = 4
[
α⊗ (1− α) + α⊗ (1 + α)− α⊗ α

]
= 4

[
α⊗ (1− α2)− α⊗ α

]
, (4.9)

where the last expression is written explicitly in terms of the alphabet α and 1−α2. Note

that the symbol may also be expressed using α2 and 1−α2, as 2S[ln(α)] = ⊗α2. So at the

symbol level we have

S [U1(α)] = S [R1(α)]|α→−α2 =
1

2
S [S1(α)]

∣∣∣∣
α→α2

. (4.10)

In conclusion we saw that at the level of the symbol, contributions to the anomalous di-

mensions are invariant under α → −α. As expected by crossing symmetry, the result

for timelike kinematics only differs from that for spacelike kinematics by the terms gen-

erated through analytic continuation. Furthermore, we learnt that the crossing symmetry

is realised (at least at two loops) only after combining the web with the corresponding

commutators of its subdiagrams appearing in eqs. (1.15) to form the subtracted web.

To fully understand these observations it is useful to recall relation between αij and

the dimensionful kinematic invariants using eqs. (2.13) and (1.6):

αij =

√
1−

√
m2

im
2
j

pi·pj −

√
1 +

√
m2

im
2
j

pi·pj√
1−

√
m2

im
2
j

pi·pj +

√
1 +

√
m2

im
2
j

pi·pj

(4.11)

and consider the expansion for small masses, m2
i , m

2
j → 0, corresponding to the lightlike

limit14. We observe that in this limit

αij →

√
m2
im

2
j

−2pi · pj

[
1 +O

(
m2
im

2
j

(2pi · pj)2

)]
(4.12)

14I would like to thank Lance Dixon for illuminating discussions on this subject.
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where the square brackets is a Taylor expansion in powers of m2
im

2
j/(2pi · pj)2. Given what

we know about the functions contributing to the anomalous dimension for this class of webs

(eq. (4.2) above) we expect logarithmic and polylogarithmic functions depending on αij .

A logarithm of αij corresponds in the lightlike limit a logarithm of
√
m2
im

2
j/(−2pi · pj),

plus subleading dependence taking the form of integer powers of m2
im

2
j/(2pi · pj)2, consis-

tently with the expected analytic properties. Logarithms of αij are sensitive to the sign

of pi · pj , namely they depend on whether the partons are incoming or outgoing, and they

will generate iπ terms when analytically continued to timelike kinematics, αij < 0, but

importantly, the powers are insensitive to this.

Consider now a logarithm of (1 − αij). Upon expanding near the lightlike limit,

m2
i , m

2
j → 0, such a term would generate power terms proportional to

√
m2
im

2
j/(−2pi · pj)

having square-root branch points for small masses, which should never occur in a scatter-

ing amplitude. A similar behaviour would arise in more complicated functions containing

⊗(1−αij) in their symbol, as occurs in S1(αij). This is avoided of course if there is also a

corresponding term with ⊗(1 + αij) building up dependence on ⊗(1− α2
ij) in the symbol,

as we do indeed observe in the example considered.

On this basis we formulate the following general conjecture:

Alphabet conjecture: The alphabet of the symbol of all multiple-gluon-exchange sub-

tracted webs is restricted to ⊗αij and ⊗(1− α2
ij).

This guarantees, in particular, an exact crossing symmetry at the level of the symbol

at any loop order. This analytic structure is consistent with all we have observed through

three loops as well as with what authors of refs. [83, 84] have found through six loops in

the two-Wilson-line case. While we do not have a formal proof of the above conjecture, it

looks unavoidable given the following physical considerations:

• The physical region extends throughout the range 0 < |αij | < 1.

• One expects a branch cut on the negative real αij axis corresponding to timelike

kinematics, and no other cuts in the physical region.

• Given this and the inversion symmetry αij → 1/αij , one expects branch points to

appear at boundaries, αij → 0, αij → ±1 and at αij →∞, but nowhere else.

• Considering the small-mass limit discussed above, analyticity of power terms in m2
i

requires dependence through ⊗(1−α2
ij) rather than separately on ⊗(1−αij) and on

⊗(1 + αij).

4.3 Subtracted webs

We observed that the crossing symmetry is realised only at the level of the subtracted

web, namely only once we form the relevant combination of a web with the corresponding

commutators of lower-order webs corresponding to its subdiagrams. At two loops we have

seen that neither the symbol of the 1-2-1 web in eq. (3.11) nor that of the commutator
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of eq. (3.14) admit the αij → −αij symmetry, while the symbol of their combinations

which enters the anomalous dimension, the subtracted web of eq. (4.9), does. Our next

question is then why is α → −α symmetry violated before forming the subtracted-web

combination. Equivalently, we want to understand why ⊗(1− αij) appears in the symbol

of non-subtracted webs without a corresponding ⊗(1 +αij), while in subtracted webs only

⊗(1− α2
ij) is allowed.

To address this question recall that the 1/ε pole whose coefficient we are extracting

is not the leading pole of individual diagrams. For example the two-loop diagrams of the

1-2-1 web are separately of O(1/ε2), implying that the O(1/ε) terms are regularization

dependent. When forming the web the leading poles cancel, but a residual regularization

dependence remains at O(1/ε).

We conclude that in general the kinematic dependence of the web, before forming the

subtracted-web combination, is regularization dependent. Indeed our infrared regulariza-

tion in eq. (2.1) introduces15 dependence on the kinematic invariants through the exponen-

tial suppression factor exp
{
−imλ

√
β2i − i0

}
, involving the square-root of the Wilson-line

mass squared. The particular form of the cutoff dictates the specific functional dependence

of w(n) on α, and there is no surprise that square roots appear there. However the sub-

tracted web w(n,−1), which contributes directly to the anomalous dimension Γ(n,−1), must

be independent of the details of the regulator, and no square roots can survive.

The fact that regularization-independence along with the crossing symmetry must

be there for subtracted webs while not for non-subtracted ones, strongly suggests one

should organise the calculation in terms of subtracted webs. Indeed, we have already

seen that the structure of the integrals for products of subdiagrams of a web according to

eq. (1.15) admits a form similar to the web itself, all sharing the same product of p0(xk, αk)

functions, so it is straightforward to form the subtracted-web combinations at the level of

the integrand.

Expanding the kinematic functions of the form of eq. (4.2) in ε and forming the sub-

tracted web combination we obtain at O(αns ε
−1):

w(n,−1) =

(
1

4π

)n
Ci1,i2,...in+1

∫
dx1dx2 . . . dxn ×

n∏
k=1

p0(xk, αk)×

Gn−1
(
x1, x2, . . . , xn; q(x1, α1), q(x2, α2), . . . q(xn, αn)

)
,

(4.13)

where Ci1,i2,...in+1 is a (connected) colour factor involving the generators of up to (n + 1)

Wilson lines and Gn−1 is a polylogarithmic function of uniform transcendental weight (n−
1). The contributions to the anomalous dimension need to be summed over all subtracted

webs of order n, Γ(n) = −2n
∑

iw
(n,−1)
i (where we discarded running coupling terms). It

should be noted that a given web may in general contribute to several different colour

factors (these are enumerated by the eigenvectors of the mixing matrix corresponding

15Recall that without any regulator the result vanishes as a scaleless integral. The suppression factor is

introduced in a manner that preserves the rescaling symmetry. This requirement along with the chosen

linear dependence of the exponential on λ implies dependence on the square root
√
β2
i − i0.

– 26 –



to unit eigenvalue [93, 101]). Also note that different webs may contribute to the same

colour factor. Thus webs, or for that matter subtracted webs, are not by themselves gauge

invariant, while the sum of all subtracted webs contributing to a given colour factor is.

4.4 Basis of integrals for subtracted webs

Given that the integral in eq. (4.13) is expected to admit the analytic properties established

above, namely its symbol alphabet should be restricted to ⊗α and ⊗(1−α2), it is natural

to express the result in terms of a basis of functions which themselves have these analytic

properties. Our final task in this section is to explicitly construct this basis of functions.

To this end it is useful to recall the structure of the integrand on the r.h.s of eq. (4.2) along

with the constraints on the transcendental weight of the kernel. For n gluon exchanges

φn−1 has weight (n − 1), thus at one loop it is a constant, at two loops a logarithm and

at three loops a product of two logarithms or a dilogarithm, and so on. Similarly in

Gn−1, we expect to get products of logarithms and polylogarithms of ratios16 of xk, as

well as logarithms17 of q(xk, αk). Thus we conclude that G0 is a constant, G1 may be a

linear combination of lnxk and ln q(xk, αk) terms, and G2 may contain products of the

above including ln2 xk, lnxk ln q(xk, αk), and ln2 q(xk, αk). It may a priori contain also a

dilogarithm Li2(−xk/xj), which we encountered in eq. (3.26), and as we already noted, it

does not appear in subtracted webs; this issue will be further discussed below.

Another ingredient which can appear in Gn−1 is a Heaviside function such as θ(xk > xj).

As already mentioned, a Heaviside function may survive the {λi} integrations in eq. (4.1)

and appear in the web kernel in webs where the n gluons connect less than the maximal

number of (n + 1) Wilson lines. Here we will not consider this possibility, which will be

studied in detail in a forthcoming publication [115] where we consider three-loop webs

connecting three Wilson lines.

A compilation of the integrals which may appear in non-subtracted webs through

three loops appears in table 1. Importantly the symbol of such integrals would not in

general admit the αk → −αk symmetry. Thus, imposing the requirement that the symbol

alphabet would be restricted to ⊗α and ⊗(1− α2) places a severe restriction on the basis

of required functions for subtracted webs. It is straightforward to construct those linear

combinations of the integrals in table 1 which, at the symbol level, admit the αk → −αk
symmetry. Examining the entries in table 1 we note that an extra power of ln q(xk, αk) in

the integrand results in an extra ⊗(1 + α) in the symbol of the integral, while an extra

power of lnxk translates into an extra ⊗(1 − α). Thus to impose the crossing symmetry

we need to balance factors of ln q(xk, αk) with factors of lnxk, selecting very few basis

functions. Note that this is sufficient to realise the symmetry since, owing to eq. (4.7),

entries with the letter α are insensitive to sign reversal.

At one and two loops there is just one basis function at each order:

R0(α) =
1

2r

∫ 1

0
dxp0(x, α) (4.14a)

16It must be ratios of xk because Θ in eq. (4.1) only depends on such ratios.
17Note that the logarithms of q(xk, αk) all originate from expanding p(x, α) in ε as in eq. (4.3); thus

polylogarithms of q(xk, αk) do not ever arise in Gn−1.
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U1(α) = S1(α) + 2R1(α) =
1

r

∫ 1

0
dxp0(x, α) ln

(
q(x, α)

x2

)
, (4.14b)

where the symbol of the latter is given in eq. (4.9). Also beyond two loops this symmetry

provides a highly non-trivial constraint, yet there are more functions that arise. At three

loops we get the following set of functions, all having a symbol which is symmetric under

α→ −α:

U2(α) = R2(α)− S2(α)− V2(α) =
1

r

∫ 1

0
dx p0(x, α)

1

4
ln2

(
q(x, α)

x2

)
(4.15a)

Σ2(α) = S̃2(α)− S2(α) =
1

r

∫ 1

0
dx p0(x, α)

1

2
ln2

(
x

1− x

)
(4.15b)

V2(α) =
1

r

∫ 1

0
dx p0(x, α) ln(x) ln(q(x, α)) (4.15c)

with the corresponding symbols:

S [U2(α)] = 4α⊗
[
α⊗ α− α⊗ (1− α2)− (1− α2)⊗ α+ (1− α2)⊗ (1− α2)

]
(4.16a)

S [Σ2(α)] = 2α⊗ α⊗ α (4.16b)

S [V2(α)] = 2α⊗ (1− α)⊗ α− 4α⊗ (1− α)⊗ (1 + α) + 2α⊗ α⊗ (1− α)

− α⊗ α⊗ α+ 2α⊗ α⊗ (1 + α)− 4α⊗ (1 + α)⊗ (1− α) + 2α⊗ (1 + α)⊗ α .
(4.16c)

The definitions and the symbols of the non-symmetric functions R2, S2 and S̃2 can be

found in table 1. It is interesting to observe, in analogy with eq. (4.10), that the symbol

for U2 is related to those of the functions R2 and S2 as follows:

S [U2(α)] =
1

2
S [R2(α)]

∣∣∣∣
α→−α2

= −1

2
S [S2(α)]

∣∣∣∣
α→α2

− 4α⊗ α⊗ α . (4.17)

The latter relation is useful for deriving a compact expression for the integral (4.15a) in

terms of polylogs, eq. (4.19) below.

We note that there is an important difference between the first two functions, U2 and

Σ2 on the one hand, and V2 on the other: while the symbol of the former may be written

solely in terms of the letters α and 1−α2, the symbol of the latter requires using 1−α and

1 + α (and yet it admits the α→ −α symmetry). The difference between these two types

of functions can also be seen upon taking an expansion about the lightlike limit, where

α→ 0. For V2(α) this expansion yields:

V2(α) = −1

6
ln3(α)− π2

6
ln(α)− 3ζ3 + π2α + O(α2) , (4.18)

which evidently includes an O(α1) term corresponding, according to eq. (4.12), to a square

root of the Wilson-line mass squared, which violates the expected analytic properties.

Such odd powers cannot appear in functions whose symbols consist exclusively of ⊗α and

⊗(1 − α2). This can be checked explicitly for the functions U2 and Σ2, whose expansions
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will be given in eq. (4.21) below. We will see that the contributions of three-loop subtracted

webs considered in the next section can indeed be written in terms of U2 and Σ2 (as well

as the lower-order functions U1 and R0).

Upon integration eqs. (4.15) yield:

U2(α) = ζ3 − Li3
(
α2
)
− 2Li3

(
1− α2

)
+ 2Li2

(
α2
)

ln
(
1− α2

)
+ 2Li2

(
1− α2

)
ln
(
1− α2

)
− 2 ln

(
1− α2

)
ln2 (α) + 4 ln(α) ln2

(
1− α2

)
+

2

3
ln3 (α)− π2

3
ln
(
1− α2

)
+
π2

3
ln(α)

(4.19)

and

Σ2(α) =
1

3
ln(α)

(
ln2(α) + π2

)
. (4.20)

We note that the functions, much like their symbols, can be conveniently written in terms

of α and 1 − α2. We emphasize that the functions of eqs. (4.19) and (4.20) correctly

represent the defining integrals of eqs. (4.15a) and (4.15b), respectively, for complex values

of α, and in particular, making the analytic continuation through the upper half plane,

they are valid near the timelike axis. These are the two weight-three functions which will

be needed for the three-loop subtracted webs 1-2-2-1 and 1-1-1-3 in the next section. The

third function, V2, which as explained above should not appear, is given in the appendix

(eq. (A.17)).

A comment is due concerning the fact that the integral of eq. (3.26), where the kernel

involves a dilogarithm, does not occur in subtracted webs. Indeed this integral18 does not

fulfill our expectation that the letters in the symbol would be drawn from the set 1 − α2

and α; instead these are drawn from a much longer list:{
α1, 1+α1, α2, 1−α2, 2+α1−α2, 1+2α1, 1−2α2, 1−2α2−α1α2, 1+2α1−α1α2, α1−α2−2α1α2

}
,

where we denoted the two α variables by α1 and α2. From this list it is already clear

that this integral violates the symbol-level symmetries α → −α for the two α variables.

We cannot rigorously exclude at this point the possibility that at some higher-loop order

polylogarithms of ratios of xk variables would appear, but we consider this unlikely: because

Gn−1 can only depends on ratios xi/xj , such integrals are bound to contain a richer alphabet

and violate the α→ −α symmetries.

Given our conclusion that polylogarithms do not appear in Gn−1, the basis of func-

tions appearing in subtracted webs (of the multiple-gluon-exchange type) is very limited

and can be constructed to all orders by considering powers of logarithms. This is a rather

remarkable simplification: due to the basic property of the logarithm, this would imply

that the following conjecture must hold.

Factorization conjecture: all multiple-gluon-exchange subtracted webs can be written as

sums of products of polylogarithms, each depending on a single αij variable.

18We do not present the result for the integral nor its symbol since these are rather lengthy, and will not

be needed.
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In other words eq. (4.13) does not entangle two or more kinematic variables through mul-

tiple polylogarithms. There is one potential caveat though: recall that beyond logarithms

Gn−1 may also contain some Heaviside functions. These should occur in more entangled

webs than the ones computed in this paper, where n gluons connect n or fewer Wilson lines.

While it is quite clear that for such webs we will need to extend the class of functions by

allowing for a Heaviside function in the integrand, we expect that these would not violate

the factorization of the final integrals into sums of products of polylogarithms. The reason

for this is that these Heaviside functions are related to non-singular configurations which

occur in diagrams that are not maximally reducible, such crossed gluons (as in the 1-2-3

web) or the Esher straircase configuration of the 2-2-2 web (figures can be found in section

A.2 or ref. [93]). This needs to be examined in detail, and it will be done as part of a

forthcoming study of webs connecting three Wilson lines at three loops [115].

As another consistency check of the basis of functions we presented, consider the

forward limit where α → 1. Recall that each rational factor r(α) = 1+α2

1−α2 has a simple

pole in this limit, and since physically we do not expect a singularity for α = 1, the

transcendental function must vanish there to compensate for this pole. We have already

seen this at one and two loops in eqs. (2.8) and (3.25), respectively. Taking the α → 1

limit in eqs. (4.20) and (4.19) we do indeed find that the two functions U2(α) and Σ2(α)

vanish.

Finally, consider expansion around the lightlike limit, α → 0. The first observation

is that in this limit the rational factor of any multiple-gluon-exchange web tends to one,

since r(α) = 1 +O(α2). As discussed above, the transcendental functions are expected to

give rise to a series of logarithms of plus, potentially, O(α2) power suppressed terms. This

is indeed what we get for our basis functions:

R0(α) = lnα , (4.21a)

U1(α) = −2 ln2(α)− π2

3
+ O(α2) , (4.21b)

U2(α) =
2

3
ln3(α) +

π2

3
ln(α)− ζ3 + O(α2) , (4.21c)

Σ2(α) =
1

3
ln3(α) +

π2

3
ln(α) , (4.21d)

where the absence of odd powers of α guaranties the correct analytic structure in the

Wilson-line mass squared.

5 Three-loop results

In the previous section we analysed the symmetries and analytic properties characterizing

multiple-gluon-exchange subtracted webs which contribute directly to the soft anomalous

dimension and deduced a basis of functions in terms of which three-loop subtracted webs

may be expressed. We now return to perform explicit calculations and illustrate that the

results meet our expectations. We focus here on the two three-loop webs that span four

Wilson lines: the 1-2-2-1 and the 1-1-1-3 webs. These are the most interesting gluon-

exchange webs in what concerns the lightlike limit of the soft anomalous dimension. These
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webs are also less entangled than ones that span fewer Wilson lines at the same loop order;

this restricts the basis of relevant integrals to the ones we explicitly constructed above,

those which do not contain any Heaviside functions. The extension to webs connecting

three Wilson lines at three loops is under way [115].

Given that the calculation is lengthy we relegate most of the details to the appendices.

These involve many important issues with regards to the integration over the Wilson lines19

and the simplifications achieved by forming the web at the first stage (appendix B) and

the subtracted web (appendix C) at the final stage of the calculation. These steps will

be useful for future calculations of other three-loop and higher-order webs [115]. In this

section we will only summarize the main results. We start with the 1-2-2-1 web and then

consider the 1-1-1-3 one.

5.1 The 1-2-2-1 subtracted web

1 2

34

3a 3b 3c 3d

Figure 7. The four 3-loop diagrams forming the 1-2-2-1 web in which four eikonal lines are linked

by three gluon exchanges.

The web W
(3)
(1,2,2,1) is composed of four diagrams, depicted in figure 7. Following

refs. [101] and [103] (section 3.3) we know that this web contribute with a unique colour

factor as follows:

W
(3)
(1,2,2,1) =


F(3a)

F(3b)

F(3c)

F(3d)


T

1

6


1 −1 −1 1

−2 2 2 −2

−2 2 2 −2

1 −1 −1 1



C(3a)

C(3b)

C(3c)

C(3d)



=
1

6

(
C(3a)− C(3b)− C(3c) + C(3d)

)(
F(3a)− 2F(3b)− 2F(3c) + F(3d)

)
.

(5.1)

In appendix B we compute the four diagrams and express them all as integrals over the

three parameters x, y and z associated respectively with emission angles of the three gluons.

Combining the four according to eq. (5.1) and evaluating the nested commutator generated

19A particularly subtle point dealt with in appendix B is the ε expansion in the presence of end-point

singularities.
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by the combination of the colour factors we obtain:

W
(3)
(1,2,2,1) = −fdcefabeT a1 T b2T c3T d4 κ3

3Γ(6ε)

4ε

∫ 1

0
dxdydz p(x, α12)p(y, α23)p(z, α34)×{(

ln
(y
x

)
+ ln

(y
z

))
+ ε

[
12

(
Li2

(
−y
x

)
+ Li2

(
−1− y

z

)
+ ζ2

)

+ ln2

(
1− y
z

)
+ 8 ln

(
1− y
z

)
ln
(y
x

)
+ ln2

(y
x

)]
+O(ε2)

}
,

(5.2)

where we used the definition of κ from eq. (2.5) and p(x, α) from eq. (3.20). The result is

consistent with the general form of multi-gluon-exchange webs described by eq. (4.2). The

function of x, y and z in the curly brackets is the 1-2-2-1 web kernel. Note that the web,

as it stands, has a double pole, which exactly matches the commutator term involving its

subdiagrams, as shown in ref. [104]. The contribution to the anomalous dimension emerges

from the O(ε−1) term which is displayed explicitly in eq. (A.21); note that besides the

contribution of the O(ε) term in the curly brackets of (5.2), this includes logarithms such

as ln q(x, α12) from the expansion of the d-dimensional propagators which multiply the

O(ε0) term in the curly brackets in (5.2).

The next stage of the calculation, which is presented in detail in appendix C, is to

form the subtracted web, combining the web of eq. (5.2), or eq. (A.21), with commutators

of lower-order webs according to

w(3,−1) = w(3,−1) − 1

2

[
w(1,0), w(2,−1)

]
− 1

2

[
w(2,0), w(1,−1)

]
− 1

6

[
w(1,0),

[
w(1,−1), w(1,0)

]]
− 1

6

[
w(1,−1),

[
w(1,1), w(1,−1)

]]
,

(5.3)

which is the combination entering the anomalous dimension coefficient Γ
(3)
4 . It should be

understood that by w(2,k) and w(1,k) in eq. (5.3) we refer to a sum over all relevant webs

corresponding to the subdiagrams of the three-loop web under consideration. In the case

of the 1-2-2-1 considered here, this sum is spelled out explicitly in eq. (C.1). Importantly,

all the terms give rise to the same colour factor, and the same general form of kinematic

integrals, as they all involve the same three gluon exchanges: between the pairs of lines

(1,2), (2,3) and (3,4). This facilitates combining the terms under the integral in eq. (C.4)

which is consistent with the general form anticipated in eq. (4.13). Importantly, in eq. (C.4)

we observe the cancellation of the dilogarithmic term present in the web kernel of eq. (5.2),

a cancellation which is due to the interplay between the web and the commutator terms.

As discussed in the previous section this cancellation is necessary for the subtracted web

to be consistent with the predicted analytic structure.

All the relevant expressions for w(n,k) are summarised in appendix A. Substituting

these into eq. (5.3) one arrives, after some algebra which we relegate to appendix C, to the

final result for the 1-2-2-1 subtracted web, which reads:

w
(3,−1)
(122334) = −1

6
fabef cdeT a1 T

b
2T

c
3T

d
4

(
1

4π

)3

G(α12, α23, α34) (5.4)
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with

G(α12, α23, α34) = r(α12) r(α23) r(α34)

[
− 8U2(α12) lnα23 lnα34 − 8U2(α34) lnα12 lnα23

+ 16
(
U2(α23)− 2Σ2(α23)

)
lnα12 lnα34

− 2 lnα12 U1(α23)U1(α34)− 2 lnα34 U1(α12)U1(α23) + 4 lnα23 U1(α12)U1(α34)

]
,

(5.5)

where the rational factor is a product of three r(α) factors of eq. (2.15), each of them

associated with one of the gluons, while the transcendental part of G(α12, α23, α34), which

is a pure function of weight 5, is expressed in terms of the basis of functions constructed in

the previous section, with U1(α) defined as an integral in eq. (4.14b) and given explicitly

in eq. (3.18) and U2(α) and Σ2(α) are defined in eqs. (4.15a) and (4.15b), respectively,

and given explicitly in eqs. (4.19) and (4.20), respectively. We emphasise that the fact

that the final result may be written in terms of a sum of products of polylogarithms, each

depending on a single cusp angle (a single αij) is a highly non-trivial property of subtracted

webs, which does not hold for individual diagrams, nor for the non-subtracted web in this

case, owing to the presence of the dilogarithm Li2
(
− y
x

)
in eq. (5.2). As explained in the

previous section this remarkably simple form of the subtracted web is associated with the

purely logarithmic nature of the function G in eq. (4.13), and it is ultimately related to

analyticity and crossing symmetry.

5.2 The 1-1-1-3 subtracted web

Let us now turn to consider the 1-1-1-3 web in which the three gluons connect to line 4. The

six (3!) diagrams forming this web are shown in figure 8; the six are denoted respectively

by A through F . The mixing matrix for this web was presented in ref. [93] (see appendix

A.1.2 there). In contrast to the 1-2-2-1 case, this matrix has rank two, thus giving rise

to two independent (connected) colour factors, each of which involves a different linear

combination of kinematic integrals. The result reads:

W(1,1,1,3)(α14, α24, α34) = T a1 T
b
2T

c
3T

d
4

[
f bcefadeF(1,1,1,3);1(α14, α24, α34)

+ facef bdeF(1,1,1,3);2(α14, α24, α34)

]
,

(5.6)

with

F(1,1,1,3);1(α14, α24, α34) =
1

6

(
−FA + 2FB −FC −FD −FE + 2FF

)
, (5.7a)

F(1,1,1,3);2(α14, α24, α34) =
1

6

(
−FA −FB + 2FC −FD + 2FE −FF

)
. (5.7b)

The calculation of the integrals for the six diagrams is presented in detail in appendix B.

As we have seen in previous examples, we combine the integrands under the triple integral
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1

2 3

4

Figure 8. The six 3-loop diagrams forming the 1-1-1-3 web in which four eikonal lines are linked

by three gluon exchanges. We label the diagrams in the first row from left to right by A, B and C,

and the ones in the second row by D, E and F, respectively.

over x, y and z, which correspond respectively to the angles of the three gluon exchanges

between the lines (1,4), (2,4) and (3,4). The resulting combinations of kinematic integrals

in eq. (5.7) are summarised in appendix A in eqs. (A.23) and (A.24). Note that similarly

to the 1-2-2-1 case, the web as a whole has a double pole in ε, while only the single

pole would contribute to the anomalous dimension. Also here the O(1/ε) term of the

non-subtracted web contains a dilogarithm, which upon integration over the x, y and z

variables would generate multiple polylogarithms; also here these terms will cancel upon

forming the subtracted web combination.

As in the previous example, the calculation proceed by using eq. (5.3) to form the

subtracted web, eq. (C.7). The details of the calculation are again relegated to appendix C

and the final result reads:

w
(3,−1)
(123444) = −1

6

(
1

4π

)3

T a1 T
b
2T

c
3T

d
4

[
fadef bceF (α14, α24, α34) + facef bde F (α24, α14, α34)

]
(5.8)

with

F (α14, α24, α34) = r(α14) r(α24) r(α34) ×[
8U2(α14) lnα24 lnα34 + 8U2(α34) lnα14 lnα24 − 16U2(α24) lnα14 lnα34

+ 2 lnα14 U1(α24)U1(α34) + 2 lnα34 U1(α14)U1(α24)− 4 lnα24 U1(α14)U1(α34)

]
.

(5.9)

Again, as anticipated, there are three rational factors r(α) each corresponding to a single

gluon exchange, multiplying a transcendental function of weight 5 which is written as a

sum of products of functions of single kinematic variables using basis of section 4, where
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the symbol-level crossing symmetry is manifest. Note that F (α14, α24, α34) is symmetric

under swapping the third and first arguments, but not the second. Also note the similarity

between this result for the 1-1-1-3 web and that of the 1-2-2-1 web in eq. (5.5): apart from

the necessarily different set of arguments (here all gluon connect to line 4) and an overall

sign, the only difference is the Σ2 term which appears in the 1-2-2-1 case but not here.

6 Conclusions

In this paper we took a step towards calculating the soft anomalous dimension for multi-

leg scattering at three-loop order. The state of the art, as of a few years ago, is two

loops [19, 20, 26, 31, 33], where up to three Wilson lines are connected. Here we computed

explicitly the three-loop contributions to the soft anomalous dimension of a product of non-

lightlike Wilson lines from a specific class of webs consisting of multiple gluon exchanges

which connect four lines, the 1-2-2-1 and the 1-1-1-3 webs. These are the first three-

loop results to become available beyond the case of the angle-dependent cusp anomalous

dimension which was studied recently in the context of theN = 4 theory [4, 16, 82–84]. Our

final results for these webs, presented in section 5, display a remarkably simple structure

involving a pure function of weight 5, which is a sum of products of specific polylogarithmic

functions, each depending on a single cusp angle.

In order to complete the computation of the angle-dependent soft anomalous dimen-

sion several other webs need to be evaluated; the complete list can be found in ref. [93].

Specifically, the remaining webs that connect four Wilson lines, thus having the same colour

factors as the webs we computed here, fall into two categories: those of figure 2, which are

comprised of a single connected graph with either one four-gluon vertex or two three-gluon

vertices, and the 1-1-1-2 web of figure 3 where each diagram consists of two connected

subdiagrams, one of which involving a three-gluon vertex. Each of these types of webs

requires different techniques, and their calculation is in progress.

Besides computing specific diagrams we developed in this paper a general strategy

for computing webs that consist of multiple gluon exchanges between any number of non-

lightlike Wilson lines, and elucidated the analytic structure of the contributions of such webs

to the anomalous dimension. The calculation itself is formulated entirely in configuration

space, where loop-momentum integrals are replaced by integrals along the Wilson lines. By

choosing appropriate integration variables the latter are done in two steps, as summarised in

eqs. (4.1) and (4.2). In the first step all integrals associated with the distances of the gluons

to the hard-interaction vertex are performed, making use of an infrared regulator. The

result is a polylogarithmic kernel multiplying a product of propagator-related functions,

p(x, α), each depending on the emission angle x of a given gluon, and the exponent of the

corresponding cusp angle between the respective Wilson lines, α. In the second step the

integrals over the gluon emission angles are performed; in practice this is only done after

combining diagrams into webs, and further combining webs with commutators of their

subdiagrams to form subtracted webs. It is at this stage that regularization independence

is recovered, along with the analytic properties associated with crossing symmetry.
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Organising the calculation in terms of webs, and then subtracted webs, has been abso-

lutely essential for the present work. Recall that the notion of a web as a set of diagrams

which are interrelated by permutations emerged not long ago through the formulation of a

diagrammatic approach to exponentiation in refs. [101, 102]. Progress was achieved there

owing to the replica trick of statistical physics which led to a general algorithm for de-

termining web mixing matrices. The study of these [93, 103–106] proceeded using both

combinatorial methods and the connection with the renormalizability of the Wilson-line

vertex. The most striking feature of webs is that – despite the fact that they contain dis-

connected, often reducible diagrams – their colour factors always correspond to connected

graphs [93]. More subtle is the fact that webs renormalize independently. This implies

that the kinematic integrals in a web conspire to cancel certain subdiveregnces, and all

remaining multiple poles match precisely the commutators of lower-order webs [104]. The

contributions to the anomalous dimension, summarised by eq. (1.15), are associated with

the single 1/ε pole. These properties have been essential for the present calculation.

Doing the calculation we have seen that combining diagrams into webs at the integrand

level has numerous advantages. The first, rather obvious advantage is that there are fewer

integrals to evaluate; this is because the rank of a mixing matrix is always smaller than

its dimension. More important is the fact that the web combinations one computes are

projections onto particular connected colour factors. Ref. [93] provided a systematic way

of determining a basis for these colour factors. This is important because a gauge invariant

result is only obtained upon summing all the webs that contribute with a given colour

factor. A further advantage of organising the calculation in terms of webs is the possibility

to predict the precise structure of all multiple poles, 1/εk for k ≥ 2, in webs through

commutators of lower-order webs [104]. This is a highly constrained structure, facilitating

non-trivial consistency checks.

All of these points were fully appreciated when setting up the present calculation. What

was less obvious a priori were the advantages of the further step of combining webs with

commutators to form subtracted webs. Such a combination is natural, since all combined

terms have the same set of subdiagrams, hence the common colour factors. Similarly to

the previous step this combination can be done before integrating over the gluon emission

angles, owing to the common set of propagators. The key point is that it is only at this stage

that regularization invariance is restored, and this is linked with the restoration of crossing

symmetry. This amounts to a major simplification whereby all polylogarithmic terms in

the kernel cancel. As a consequence the final result is free of multiple polylogarithm that

couple the kinematic variables associated with different cusp angles. Furthermore, the fact

crossing symmetry is violated before forming the subtracted web combinations turns out

to be very useful in practice, since it provides stringent checks of the new O(ε−1) terms

through their correspondence with commutators of lower-order webs.

Analysing the structure of multiple-gluon-exchange integrals we have shown in section 4

that each web is associated with a unique rational factor which is common to all the

diagrams in a web, and all the contributions to the corresponding subtracted web. This

factor is simply the product of r(αij) of eq. (2.15) for each gluon exchange. These rational

factors are particularly important for timelike kienamtics near absolute threshold where
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αij → −1, since they encapsulate the coulomb singularity. They also have a special role

for space-like kinematics near the forward limit, α→ 1, where the pole cancels by a zero of

the corresponding transcendental function. We comment that for webs that do not consist

exclusively of gluon exchanges, and have some three- or four-gluon vertices off the Wilson

lines, the number of factors of r(αij) is lower than the loop order, and it seems to be

related instead to the number of connected subdiagrams20. An example is provided by the

two-loop three-leg web of eq. (3.13) which has just one factor of r(αij). It is likely that the

rational functions of general multi-loop webs would be rather more complex than seen in

gluon-exchange diagrams, but this deserves further study.

Some important comments are due concerning the lightlike limit, where αij → 0.

The first observation is that in this limit the rational factors tend to one (up to power

suppressed terms) and thus become irrelevant. Consequently the lightlike soft anomalous

dimension receives, on equal footing, contributions from terms which have different rational

factors away from this limit. As has already been noted in refs. [26, 31, 33] the terms

originating in the two webs of figure 6 are separately logarithmically divergent in this

limit, but they conspire to cancel, consistently with the calculation of ref. [19, 20] and the

dipole formula [35–37, 39, 40]. The implication for three loops is that all webs that span

four Wilson lines need to be computed in order to deduce whether there are corrections

to the dipole formula. The three-loop webs computed here, eqs. (5.5) and (5.9), are also

logarithmically divergent in the lightlike limit; in fact, all the terms which do not vanish

in this limit are logarithmically divergent. Similarly to the two-loop case such terms are

expected to appear in other webs and conspire to cancel in the sum. In contrast to the

two-loop case, non-trivial functions of confomally-invariant cross ratios
αijαkl

αikαjl
may survive

in this limit [36, 37, 40, 86–92]. To determine them we need to complete the calculation of

the diagrams in figures 2 and 3.

The analysis of multiple-gluon-exchange integrals in section 4 led, aside from a determi-

nation of the rational factors, to a detailed understanding of the transcendental functions

appearing in the corresponding subtracted webs. Considering the analytic structure of

these functions in terms of αij , which is depicted in figure 5, along with the crossing sym-

metry which relates spacelike and timelike kinematics, we were led to conjecture that the

alphabet of the symbol of subtracted webs is restricted to ⊗αij and ⊗(1 − α2
ij). This in

turn severely restricts the space of functions which may appear in the final results for the

contributions of this class webs to the anomalous dimension: these, we conjectured, can

always be written as sums of products of specific polylogarithmic functions, each depending

on a single αij variable. The basis of these functions can be systematically constructed at

any loop order by considering the range of functions of the appropriate weight that may

appear in the relevant subtracted web kernel of eq. (4.13). This, we argued, consists exclu-

sively of powers of logarithms and Heaviside functions. Specifically, for n gluon exchange

webs that span (n + 1) Wilson lines, Heaviside functions cannot appear, restricting the

basis of functions further. At three loops this construction yields just two basis functions

20We emphasise that similarly to other diagrammatic observations this comment concerns the result in

the Feynman gauge only.
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U2(αij) and Σ2(αij), which together with the functions already encountered at one and two

loops, were indeed sufficient to express the three-loop webs we computed. We now have

the means to construct a similar basis for other gluon-exchange webs at three loops and

beyond. Specifically, work on the extension of the basis for webs connecting three Wilson

lines at three loops, where Heaviside functions are allowed, is under way [115].

Beyond its inherent significance, the study of infrared singularities is also a natural

testing grounds for techniques to explore the structure of gauge-theory scattering ampli-

tudes in general. This work significantly benefited from the recent progress in computing

iterated polylogarithmic integrals using the symbol technique. This has proven important

for understanding the analytic structure of infrared-singular corrections to amplitudes. We

believe that our results, notably with respect to the realisation of crossing symmetry, will

feed into the study of non-singular corrections as well.

In conclusion, we have taken a step towards computing the soft anomalous dimension

for multi-leg scattering at the three-loop order, and developed methods that would facilitate

more calculations of this kind. The progress we made here on evaluating web integrals

was facilitated by, and is highly complementary to, the recent advances in soft gluon

exponentiation and the generalization of the non-Abelian exponentiation theorem to the

multi-leg case. We acquired some understanding of the kinematic dependence and the

analytic structure of webs, and we believe that much further progress in this direction is

now achievable.
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A Summary of integrals through three loops

Let us now summarize the results of the webs computed in this paper in a form that

will be useful for forming the subtracted web combination in which each web is combined

with the commutators of the webs corresponding to its subdiagrams. To this end we keep

the Wilson-line indices general, for example, we denote the 1-2-2-1 web by W (3)(ijjkkl)

meaning that line i has a single attachment, line j has two, line k has two, and line l one.

We start with the one-loop summary, continue with two loops and end with the thee-loop

webs.

A.1 One-loop integral summary

Starting with the one-loop result of eq. (2.4) we have:

W (1)(ij) = Ti · TjF (1)
ij (αij , µ

2/m2, ε)

F (1)
ij (αij , µ

2/m2, ε) = κΓ(2ε)

∫ 1

0
dx p(x, αij)

(A.1)

where κ is defined in eq. (2.5) and

p(x, αij) ≡ γijP (x, γij) , (A.2)

with

P (x, γij) ≡
[
q(y, αij)

]ε−1
; q(x, αij) = x2 +(1−x)2−x(1−x)γij ; −γij = αij +

1

αij
(A.3)

For later convenience we also define the ε→ 0 limit of p as

p0(x, αij) ≡
γij

q(x, αij)
, (A.4)

Upon integration, eq. (A.1) yields a hypergeometric function as follows:

F (1)
ij (αij , µ

2/m2, ε) = κΓ(2ε)

∫ 1

0
dx p(x, αij) = κΓ(2ε) γij 2F1

(
[1, 1− ε], [3/2],

1

2
+
γij
4

)
,

(A.5)

Upon taking the ε expansion of the one-loop result we get

F (1,−1)
ij (αij) =

κ

2

∫ 1

0
dx p0(x, αij) = κ r(αij) lnαij (A.6a)

F (1,0)
ij (αij) =

κ

2

∫ 1

0
dx p0(x, αij) ln q(x, αij) = κ r(αij)R1(αij) (A.6b)

F (1,1)
ij (αij) =

κ

2

∫ 1

0
dx p0(x, αij)

1

2
ln2 q(x, αij) = κ r(αij)R2(αij) (A.6c)

where we denoted the rational factor by eq. (2.15) and Ri in the first three orders are given

in eq. (2.16). Note that here we have not expanded the overall factor κ of eq. (2.5) and we

replaced Γ(2ε) by 1/(2ε); a similar replacement is systematically applied to the overall Γ

factors for higher order webs and the resulting constants (γE , ζ2) cancel in the final results.
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A.2 Two-loop integral summary

At two loops, starting with eq. (3.9), we have:

W (2)(ijjk) =
1

2
(C(2a)− C(2b)) (F(2a)−F(2b)) = ifabcT ai T

c
j T

b
k F

(2)
ijjk(αij , αjk, µ

2/m2, ε)

(A.7)

with

F (2)
ijjk(αij , αjk, µ

2/m2, ε) = κ2 Γ(4ε)

∫ 1

0
dx

∫ 1

0
dz p(x, αij) p(z, αjk)

×
[
φ
(0)
2 (x, z) + φ

(1)
2 (x, z)ε+O(ε2)

]
= κ2 Γ(4ε)

∫ 1

0
dx

∫ 1

0
dz p(x, αij) p(z, αjk)

×
[
ln
x

z
+
(

4Li2

(
−x
z

)
+ ln2

(x
z

)
+ 2ζ2

)
ε+O(ε2)

]
(A.8)

The ε expansion of this result is:

F (2,−1)
ijjk (αij , αjk) =

(κ
2

)2 ∫ 1

0
dx

∫ 1

0
dz p0(x, αij) p0(z, αjk)φ

(0)
2 (x, z)

F (2,0)
ijjk (αij , αjk) =

(κ
2

)2 ∫ 1

0
dx

∫ 1

0
dz p0(x, αij) p0(z, αjk)

×
[
φ
(1)
2 (x, z) + φ

(0)
2 (x, z) (ln q(x, αij) + ln q(z, αjk))

] (A.9)

where

φ
(0)
2 (x, z) = ln

x

z

φ
(1)
2 (x, z) = 4Li2

(
−x
z

)
+ ln2

(x
z

)
+ 2ζ2

(A.10a)

Note that by Bose symmetry F (2)
ijjk is antisymmetric under interchanging its arguments

αij and αjk, similarly to its colour factor. As a consequence φ
(n)
2 (x, z) are all antisymmetric

with respect to x and z, as can be explicitly verified for the expressions given above (note

that the function f(α) = 4Li2(−α) + ln2(α) + 2ζ2 admits f(−1/α) = −f(α)).

The integrals arising in eq. (A.8) are distinguished from the ones of the one-loop case

only though the appearance of logarithmic and polylogarithmic functions on x and z in

the integrand. Logarithmic ones factorize in such a way that each integral involves a single

cusp angle: they never couple the two cusp angles. Polylogarithms do couple the cusp

angles, but these do not appear in subtracted web kernels, so we will not need to consider

them.

The integrals we shall need are the following:∫ 1

0
dx ln(x)p0(x, α) = −1

2

1 + α2

1− α2
S1(α) (A.11)
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and ∫ 1

0
dx

1

2
ln2(x)p0(x, α) = −1

2

1 + α2

1− α2
S2(α) (A.12)

where

S1(α) = −2

[
−2Li2(α) +

1

2
ln2(α)− 2 ln(1− α) ln(α) + 2ζ2

]
(A.13a)

S2(α) = −
[
− 4Li3(1− α)− 2Li3(α) + 4Li2(1− α) ln(1− α)

+ 4Li2(α) ln(1− α) +
ln3(α)

3
− ln(1− α) ln2(α)

+ 4 ln2(1− α) ln(α) +
1

3
π2 ln(α)− 2

3
π2 ln(1− α) + 2ζ3

] (A.13b)

A similar integral, which will be important at three loops is the following:∫ 1

0
dx ln(x) ln(1− x)p0(x, α) = −1 + α2

1− α2
S̃2(α) (A.14)

where

S̃2(α) = 4Li3(1− α) + 2Li3(α)− 4Li2(1− α) ln(1− α)− 4Li2(α) ln(1− α)

− 4 ln(α) ln2(1− α) + ln2(α) ln(1− α) +
2

3
π2 ln(1− α)− 2ζ3

(A.15)

Finally, we shall also encounter the integral∫ 1

0
dx ln(x) ln(q(x, α))p0(x, α) =

1 + α2

1− α2
V2(α) (A.16)

where

V2(α) = Li3
(
α2
)

+ 2Li3
(
1− α2

)
− 4Li3(1− α)− 2Li3(α) + 2Li3

(
α

1 + α

)
− 2Li3

(
1

1 + α

)
+ ζ3 −

(
Li2

(
1

1 + α

)
+ Li2

(
α

1 + α

))
ln(α)− 1

6
ln(α) + (2 ln(1 + α) + ln(1− α)) ln2(α)

(A.17)

A.3 Three-loop integral summary

The results for the 1-2-2-1 web are:

W (3)(ijjkkl) =
(
C(3a)− C(3b)− C(3c) + C(3d)

)
F (3)
ijjkkl(αij , αjk, αkl, µ

2/m2, ε)

= −fdcefabeT ai T bj T ckT dl F
(3)
ijjkkl(αij , αjk, αkl, µ

2/m2, ε)
(A.18)

with

Fijjkkl(αij , αjk, αkl, µ2/m2, ε) =
1

6
(F(3a)− 2F(3b)− 2F(3c) + F(3d))

= κ3
Γ(6ε)

8ε

∫ 1

0
dxdydz p(x, αij)p(y, αjk)p(z, αkl)

[
ψ
(0)
3 (x, y, z) + ψ

(1)
3 (x, y, z)ε+O(ε2)

]
,

(A.19)
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where

ψ
(0)
3 (x, y, z) = ln

(y
x

)
+ ln

(y
z

)
ψ
(1)
3 (x, y, z) = 12

[
Li2

(
−y
x

)
+ Li2

(
−y
z

)
+ ζ2

]
+ ln2

(y
z

)
+ 8 ln

(
1− y
z

)
ln
(y
x

)
+ ln2

(y
x

)
.

(A.20a)

Thus, taking the ε expansion we obtain:

F (3,−2)
ijjkkl (αij , αjk, αkl) =

1

6

(κ
2

)3 ∫ 1

0
dxdydz p0(x, αij)p0(y, αjk)p0(z, αkl)ψ

(0)
3 (x, y, z)

F (3,−1)
ijjkkl (αij , αjk, αkl) =

1

6

(κ
2

)3 ∫ 1

0
dxdydz p0(x, αij)p0(y, αjk)p0(z, αkl)

×
[
ψ
(1)
3 (x, y, z) + ψ

(0)
3 (x, y, z) (ln q(x, αij) + ln q(y, αjk) + ln q(z, αkl))

]
.

(A.21)

For the 1-1-1-3 web the results are as follows:

W (3)(ijklll) = T ai T
b
j T

c
kT

d
l

[
f bcefadeFijklll ;1(αil, αjl, αkl) + facef bdeFijklll ;2(αil, αjl, αkl)

]
,

(A.22)

with

Fijklll ;n(αil, αjl, αkl) =
Γ(6ε)

8ε
κ3
∫ 1

0
dxdydz p(x, αil) p(y, αjl) p(z, αkl)φ3,n(x, y, z; ε)

(A.23)

where

φ3,1(x, y, z; ε) = (−2 ln(y) + ln(x) + ln(z)) +

(
− 8 ln(x) ln(z)− 2 ln(y) ln(x) + 10 ln(z) ln(y)

+ 12Li2(−x/y)− ln(z)2 + 5 ln(x)2 − 4 ln(y)2 − 12Li2(−y/z)
)
ε+O(ε2)

φ3,2(x, y, z; ε) = (ln(y) + ln(z)− 2 ln(x)) +

(
− 2 ln(x) ln(z) + 10 ln(y) ln(x)− 8 ln(z) ln(y)

− 4 ln(x)2 − ln(y)2 − 12Li2(−x/y) + 12Li2(−z/x) + 5 ln(z)2

)
ε+O(ε2) .

(A.24)

Thus, in an expanded form we have, for each n = 1, 2:

F (3,−2)
ijklll ;n(αil, αjl, αkl) =

1

6

(κ
2

)3 ∫ 1

0
dxdydz p0(x, αil)p0(y, αjl)p0(z, αkl)φ

(0)
3,n(x, y, z)

F (3,−1)
ijklll ;n(αil, αjl, αkl) =

1

6

(κ
2

)3 ∫ 1

0
dxdydz p0(x, αil)p0(y, αjl)p0(z, αkl)

×
[
φ
(1)
3,n(x, y, z) + φ

(0)
3,n(x, y, z) (ln q(x, αil) + ln q(y, αjl) + ln q(z, αkl))

]
.

(A.25)
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Definition Name symbol

1

2 r

∫ 1

0
dx p0(x, α) = lnα R0(α) ⊗α

1

2 r

∫ 1

0
dx p0(x, α) ln q(x, α) R1(α) 2α⊗ (α+ 1)− α⊗ α

1

2 r

∫ 1

0
dx p0(x, α)

1

2
ln2 q(x, α) R2(α) α⊗ α⊗ α− 2α⊗ α⊗ (α+ 1)

−2α⊗ (α+ 1)⊗ α+ 4α⊗ (α+ 1)⊗ (α+ 1)

−2

r

∫ 1

0
dx ln(x)p0(x, α) S1(α) 4α⊗ (1− α)− 2α⊗ α

−1

r

∫ 1

0
dx ln2(x)p0(x, α) S2(α) −4α⊗ (1− α)⊗ (1− α) + 2α⊗ (1− α)⊗ α

+2α⊗ α⊗ (1− α)− 2α⊗ α⊗ α

−1

r

∫ 1

0
dx ln(x) ln(1− x)p0(x, α) S̃2(α) −4α⊗ (1− α)⊗ (1− α) + 2α⊗ (1− α)⊗ α

+2α⊗ α⊗ (1− α)

1

r

∫ 1

0
dx ln(x) ln(q(x, α))p0(x, α) V2(α) 2α⊗ (1− α)⊗ α− 4α⊗ (1− α)⊗ (α+ 1)

+2α⊗ α⊗ (1− α) + 2α⊗ α⊗ (α+ 1)

−α⊗ α⊗ α
−4α⊗ (α+ 1)⊗ (1− α) + 2α⊗ (α+ 1)⊗ α

Table 1. The symbols of the transcendental functions entering the three-loop expression for the

anomalous dimension for multiple-gluon exchange webs (the 1-1-1-3 and 1-2-2-1 webs). The sub-

script next to the name of each function indicates its transcendental weight. The normalization in

all cases involves the rational function r ≡ r(α) = 1+α2

1−α2 .

where the definition of the functions φ
(0)
3,n and φ

(1)
3,n is implied by comparing eq. (A.25) to

eqs. (A.23) and (A.24).

The symbols of all the transcendental functions entering the three-loop webs we are
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considering are summarized in table 1. We observe that the first entry of all is α, each

power of ln q(x, α) or ln(x) (or ln(1 − x)) in the integrand increases the transcendental

weight by one unit, adding either α or (1 +α) entry to the symbol in the case of ln q(x, α),

and either α or (1− α) entry in the case of ln(x) (or ln(1− x)).

B Calculation of diagrams connecting four Wilson lines

In this appendix we compute the multiple-gluon-exchange three-loop webs connecting four

Wilson lines. There are two such webs, 1-2-2-1 will be discussed in section B.1, and 1-1-1-3

in section B.2. Starting from the configuration-space Feynman rules, our aim here is to

integrate over the distance parameters of the three gluons, leaving the angular integration

undone, thus obtaining a parameter representation for the web in the general form of

eq. (4.2).

B.1 The four-leg three-loop web W
(3)
(1,2,2,1)

The web W
(3)
(1,2,2,1) is composed of four diagrams as shown in figure 7. According to eq. (5.1)

we need to compute a single linear combination of the kinematic integrals corresponding

to F(3a)− 2F(3b)− 2F(3c) +F(3d). Let us begin by considering diagram (3a). Using the

configuration-space Feynman rules it evaluates to

F(3a) = g6sN 3(β1 · β2)(β2 · β3)(β3 · β4)
∫ ∞
0

dsdt1dt2du1du2dv θ(t1 < t2)θ(u1 < u2)

×
(
− (sβ1 − t2β2)2

)ε−1(
− (t1β2 − u1β3)2

)ε−1(
− (vβ4 − u2β3)2

)ε−1
× exp

{
−im

(
s
√
β21 − i0 + (t1 + t2)

√
β22 − i0 + (u1 + u2)

√
β23 − i0 + v

√
β24 − i0

)}
.

(B.1)

Rescaling the line parameters by the respective Wilson-line masses we get

F(3a) =
g6sN 3

8
γ12 γ23 γ34

∫ ∞
0

dσdτ1dτ2dµ1dµ2dν θ(τ1 < τ2)θ(µ1 < µ2)

×
(
− σ2 − τ22 + γ12στ2

)ε−1(
− τ21 − µ21 + γ23τ1µ1

)ε−1(
− ν2 − µ22 + γ34νµ2

)ε−1
× exp {−i(m− i0)(σ + τ1 + τ2 + µ1 + µ2 + ν)} .

(B.2)

At this point we introduce our usual change of variables for each gluon, as in eq. (2.6),

defining:

σ + τ2 = λ1 τ1 + µ1 = λ2 ν + µ2 = λ3
τ2

σ + τ2
= x

τ1
τ1 + µ1

= y
µ2

ν + µ2
= z

and further defining

λ1 = λω

λ2 = λ(1− ω)ζ

λ3 = λ(1− ω)(1− ζ)

(B.3)
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to extract the overall ultraviolet divergence and bring the remaining integrals into a canon-

ical parametric form. Repeating the same procedure for the remaining three diagrams we

obtain the following expressions:

F(3a) = κ3 γ12γ23γ34 Γ(6ε)

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)

∫ 1

0
dω(1− ω)4ε−1ω2ε−1

∫ 1

0
dζ(1− ζ)2ε−1ζ2ε−1 θ(ωx > (1− ω)ζy) θ((1− ζ)z > ζ(1− y))

(B.4a)

F(3b) = κ3 γ12γ23γ34 Γ(6ε)

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)

∫ 1

0
dω(1− ω)4ε−1ω2ε−1

∫ 1

0
dζ(1− ζ)2ε−1ζ2ε−1 θ(ωx > (1− ω)ζy) θ((1− ζ)z < ζ(1− y))

(B.4b)

F(3c) = κ3 γ12γ23γ34 Γ(6ε)

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)

∫ 1

0
dω(1− ω)4ε−1ω2ε−1

∫ 1

0
dζ(1− ζ)2ε−1ζ2ε−1 θ(ωx < (1− ω)ζy) θ((1− ζ)z > ζ(1− y))

(B.4c)

F(3d) = κ3 γ12γ23γ34 Γ(6ε)

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)

∫ 1

0
dω(1− ω)4ε−1ω2ε−1

∫ 1

0
dζ(1− ζ)2ε−1ζ2ε−1 θ(ωx < (1− ω)ζy) θ((1− ζ)z < ζ(1− y))

(B.4d)

where κ is defined in eq. (2.5). Note that the only difference between the different diagrams

in (B.4) is in the Heaviside functions defining the range of integration over ω and ζ. The

first integral we perform is over ω and it yields:

Diagrams a and b: Ia,bω (A) =

∫ 1

0
dω(1− ω)4ε−1ω2ε−1θ(ω/(1− ω) > A)

=

∫ ∞
0

dα(1 + α)−6ε α2ε−1 θ(α > A)

=

∫ ∞
0

dα(1 + α)−6ε α2ε−1
(

1− θ(α < A)
)

=
Γ(4ε) Γ(2ε)

Γ(6ε)
− A2ε

2ε

[
1 + 12ε2 Li2(−A) +O(ε3)

]
=

1

2ε

(
3

2
− 12ζ2ε

2 + . . .

)
− A2ε

2ε

[
1 + 12ε2 Li2(−A) +O(ε3)

]
=

1

2ε

[
3

2
−A2ε − 12ε2 (Li2(−A) + ζ2) +O(ε3)

]
,

(B.5)

– 45 –



and

Diagrams c and d: Ic,dω (A) =

∫ 1

0
dω(1− ω)4ε−1ω2ε−1θ(ω/(1− ω) < A)

=

∫ ∞
0

dα(1 + α)−6ε α2ε−1 θ(α < A)

=
A2ε

2ε

[
1 + 12ε2 Li2(−A) +O(ε3)

]
,

(B.6)

where A = ζy/x.

This relies on the general results [109]:∫ ∞
0

dα(1 + α)−nε αmε−1 θ(α > A) =
A(m−n)ε

(n−m)ε
2F1 ([nε, (n−m)ε], [1 + (n−m)ε],−1/A)

=
A(m−n)ε

(n−m)ε

(
1−

∞∑
i=2

εi
i−1∑
k=1

nk(m− n)i−kSi−k,k(−1/A)

)
∫ ∞
0

dα(1 + α)−nε αmε−1 θ(α < A) =
Amε

mε
2F1 ([nε,mε], [1 +mε],−A)

=
Amε

mε

(
1−

∞∑
i=2

εi
i−1∑
k=1

nk(−m)i−kSi−k,k(−A)

)
(B.7)

where Sa,b(z) is the Nielsen Generalized Polylogarithm

Sa,b(z) =
(−1)a+b−1

(a− 1)!b!

∫ 1

0

dx

x
lna−1(x) lnb(1− xz)

and S1,1(z) = Li2(z). We note that while both expansions in eq. (B.7) are valid in general

for any A, only the second can be used in our application. To see this note that below we

are going to take the integral over ζ from zero to 1; thus A eventually varies between zero

and a finite limit y/x (the integrals over x and y converge independently of these factors).

The A → 0 limit would be problematic if we were to use the first expansion in eq. (B.7)

as individual terms in the expansion diverge. In contract, using the second expansion in

eq. (B.7) the limit A→ 0 is smooth. This explains the way we chose to expand the integrals

in eq. (B.5).

So up to constant terms we get:

F(3a) = κ3 γ12γ23γ34
Γ(6ε)

2ε

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)∫ 1

0
dζ(1− ζ)2ε−1ζ2ε−1 θ

(
1− ζ
ζ

>
1− y
z

)
[

3

2
−
(
ζ
y

x

)2ε
− 12ε2

(
Li2

(
−
(
ζ
y

x

))
+ ζ2

)
+O(ε3)

] (B.8a)
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F(3b) = κ3 γ12γ23γ34
Γ(6ε)

2ε

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)∫ 1

0
dζ(1− ζ)2ε−1ζ2ε−1 θ

(
1− ζ
ζ

<
1− y
z

)
[

3

2
−
(
ζ
y

x

)2ε
− 12ε2

(
Li2

(
−
(
ζ
y

x

))
+ ζ2

)
+O(ε3)

] (B.8b)

F(3c) = κ3 γ12γ23γ34
Γ(6ε)

2ε

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)(y

x

)2ε ∫ 1

0
dζ(1− ζ)2ε−1ζ4ε−1 θ

(
1− ζ
ζ

>
1− y
z

)
[
1 + 12ε2 Li2

(
−ζ y

x

)
+O(ε3)

] (B.8c)

F(3d) = κ3 γ12γ23γ34
Γ(6ε)

2ε

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)(y

x

)2ε ∫ 1

0
dζ(1− ζ)2ε−1ζ4ε−1 θ

(
1− ζ
ζ

<
1− y
z

)
[
1 + 12ε2 Li2

(
−ζ y

x

)
+O(ε3)

] (B.8d)

To compute all the singular terms, down to the single pole, let us split each integral into

two, F = F1+F2, where F1 corresponds to the leading term, 1, in the square brackets above

(the leading term in the expansion of the hypergeometric function), and F2 corresponds to

the dilogarithm at O(ε2). We get:

F1(3a) = κ3 γ12γ23γ34
Γ(6ε)

2ε

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)∫ 1

0
dζ(1− ζ)2ε−1ζ2ε−1 θ

(
1− ζ
ζ

>
1− y
z

) [
3

2
−
(
ζ
y

x

)2ε]
= κ3 γ12γ23γ34

Γ(6ε)

2ε

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)[

3

2

∫ 1

0
dζ(1− ζ)2ε−1ζ2ε−1 θ

(
1− ζ
ζ

>
1− y
z

)

−
(y
x

)2ε ∫ 1

0
dζ(1− ζ)2ε−1ζ4ε−1θ

(
1− ζ
ζ

>
1− y
z

)]
(B.9a)
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F1(3b) = κ3 γ12γ23γ34
Γ(6ε)

2ε

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)∫ 1

0
dζ(1− ζ)2ε−1ζ2ε−1 θ

(
1− ζ
ζ

<
1− y
z

) [
3

2
−
(
ζ
y

x

)2ε]
= κ3 γ12γ23γ34

Γ(6ε)

2ε

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)[

3

2

∫ 1

0
dζ(1− ζ)2ε−1ζ2ε−1 θ

(
1− ζ
ζ

<
1− y
z

)

−
(y
x

)2ε ∫ 1

0
dζ(1− ζ)2ε−1ζ4ε−1 θ

(
1− ζ
ζ

<
1− y
z

)]
(B.9b)

F1(3c) = κ3 γ12γ23γ34
Γ(6ε)

2ε

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)(y

x

)2ε ∫ 1

0
dζ(1− ζ)2ε−1ζ4ε−1 θ

(
1− ζ
ζ

>
1− y
z

) (B.9c)

F1(3d) = κ3 γ12γ23γ34
Γ(6ε)

2ε

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)(y

x

)2ε ∫ 1

0
dζ(1− ζ)2ε−1ζ4ε−1 θ

(
1− ζ
ζ

<
1− y
z

) (B.9d)

and

F2(3a) = −κ3 γ12γ23γ34
∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)∫ 1

0
dζ(1− ζ)2ε−1ζ2ε−1 θ

(
1− ζ
ζ

>
1− y
z

)(
Li2

(
−
(
ζ
y

x

))
+ ζ2

)
(B.10a)

F2(3b) = −κ3 γ12γ23γ34
∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)∫ 1

0
dζ(1− ζ)2ε−1ζ2ε−1 θ

(
1− ζ
ζ

<
1− y
z

)(
Li2

(
−
(
ζ
y

x

))
+ ζ2

)
(B.10b)

F2(3c) = κ3 γ12γ23γ34

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)∫ 1

0
dζ(1− ζ)2ε−1ζ4ε−1 θ

(
1− ζ
ζ

>
1− y
z

)
Li2

(
−ζ y

x

) (B.10c)

F2(3d) = κ3 γ12γ23γ34

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)∫ 1

0
dζ(1− ζ)2ε−1ζ4ε−1 θ

(
1− ζ
ζ

<
1− y
z

)
Li2

(
−ζ y

x

) (B.10d)
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To perform the ζ integrals in F1 of eq. (B.9) we use the following results:

I>ζ (p, q;B) =

∫ 1

0
(1− ζ)pε−1ζqε−1θ

(
1− ζ
ζ

> B

)
=

∫ ∞
0

dββpε−1(1 + β)−(p+q)εθ(β > B)

=
B−εq

εq
2F1([(q + p)ε, qε], [1 + qε],−1/B)

=
B−εq

εq

(
1−

∞∑
i=2

εi
i−1∑
k=1

(p+ q)k(−q)i−kSi−k,k(−1/B)

)
(B.11)

and

I<ζ (p, q;B) =

∫ 1

0
(1− ζ)pε−1ζqε−1θ

(
1− ζ
ζ

< B

)
=

∫ ∞
0

dββpε−1(1 + β)−(p+q)εθ(β < B)

=
Bεp

εp
2F1([(q + p)ε, pε], [1 + pε],−B)

=
Bεp

εp

(
1−

∞∑
i=2

εi
i−1∑
k=1

(p+ q)k(−p)i−kSi−k,k(−B)

)
(B.12)

This yields:

F1(3a) = κ3 γ12γ23γ34
Γ(6ε)

8ε2

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)[

3

(
1− y
z

)−2ε (
1 + 8ε2 Li2(−z/(1− y)) + . . .

)
−
(y
x

)2ε(1− y
z

)−4ε (
1 + 24ε2 Li2(−z/(1− y)) + . . .

) ]
(B.13a)

F1(3b) = κ3 γ12γ23γ34
Γ(6ε)

8ε2

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)[

3

(
1− y
z

)2ε (
1 + 8ε2 Li2(−(1− y)/z) + . . .

)
− 2

(y
x

)2ε(1− y
z

)2ε (
1 + 12ε2 Li2(−(1− y)/z) + . . .

) ]
(B.13b)

F1(3c) = κ3 γ12γ23γ34
Γ(6ε)

8ε2

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)(y

x

)2ε(1− y
z

)−4ε (
1 + 24ε2 Li2(−z/(1− y)) + . . .

) (B.13c)

F1(3d) = κ3 γ12γ23γ34
Γ(6ε)

8ε2

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)

2
(y
x

)2ε(1− y
z

)2ε (
1 + 12ε2 Li2(−(1− y)/z) + . . .

) (B.13d)
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To perform the ζ integration in the F2 terms (B.10) we use the following results. First

for the constants:

for a

∫ 1

0
dζ(1− ζ)pε−1ζqε−1 θ

(
ζ <

1

1 +B

)
=

1

qε
(1 +O(ε)) (B.14)

for b

∫ 1

0
dζ(1− ζ)pε−1ζqε−1 θ

(
ζ >

1

1 +B

)
=

1

pε
(1 +O(ε)) (B.15)

For the dilogarithmic functions we get:

for a

∫ 1

0
dζ(1− ζ)pε−1ζqε−1 Li2(−rζ) θ

(
ζ <

1

1 +B

)
= O(ε) (B.16)

for b

∫ 1

0
dζ(1− ζ)pε−1ζqε−1 Li2(−rζ) θ

(
ζ >

1

1 +B

)
=

Li2(−r)
pε

(1 +O(ε)) (B.17)

These results can be proven by expanding the Li2(−rζ) =
∑∞

n=1(−tζ)n/n2 under the

integrals.

We then get:

F2(3a) = −κ3 γ12γ23γ34
ζ2
2ε

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34) (B.18a)

F2(3b) = −κ3 γ12γ23γ34
1

2ε

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)

(
Li2

(
−y
x

)
+ ζ2

)
(B.18b)

F2(3c) = O(ε0) (B.18c)

F2(3d) = κ3 γ12γ23γ34
1

2ε

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34) Li2

(
−y
x

)
. (B.18d)

Finally, combining F1 and F2 we obtain the following parametric integrals for the four

diagrams, down to single-pole terms:

F(3a) = κ3 γ12γ23γ34
Γ(6ε)

4ε

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)

×

{(
ln

(
x

y

)
+ ln

(
z

y

))

+ ε

[
− ln2

(
1− y
z

)
− ln2

(y
x

)
+ 4 ln

(y
x

)
ln

(
1− y
z

)
− 12ζ2

]} (B.19a)

F(3b) = κ3 γ12γ23γ34
Γ(6ε)

4ε

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)

×

{(
2 ln

(
x

y

)
+ ln

(y
z

))

+ ε

[
ln2

(
1− y
z

)
− 2 ln2

(y
x

)
− 4 ln

(y
x

)
ln

(
1− y
z

)
− 12

(
Li2

(
−y
x

)
+ ζ2

)]}
(B.19b)
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F(3c) = κ3 γ12γ23γ34
Γ(6ε)

4ε

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)

×

{(
2 ln

(
z

y

)
+ ln

(y
x

))

+ ε

[
4 ln2

(
1− y
z

)
+ ln2

(y
x

)
− 4 ln

(y
x

)
ln

(
1− y
z

)
+ 12 Li2

(
− z

1− y

)]}
(B.19c)

F(3d) = κ3 γ12γ23γ34
Γ(6ε)

4ε

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)

×

{(
2 ln

(y
x

)
+ 2 ln

(y
z

))
+ ε

[
2 ln2

(
1− y
z

)
+ 2 ln2

(y
x

)
+ 4 ln

(y
x

)
ln

(
1− y
z

)

+ 12 Li2

(
−1− y

z

)
+ 12Li2

(
−y
x

)]}
(B.19d)

The four diagrams contribute to the web through the combination in eq. (5.1). Combining

the corresponding integrands yields the final expression in eq. (5.2).

B.2 The four-leg three-loop web W
(3)
(1,1,1,3)

Let us now compute the diagrams of the 1-1-1-3 web shown in figure 8. One immediately

observes that there is a permutation symmetry allowing to deduce the result for the integral

for all these diagrams from any one in the set. Let us compute diagram B.

FB(1,1,1,3) = g6sN 3(β1 · β4)(β2 · β4)(β3 · β4)
∫ ∞
0

ds1ds2ds3∫ ∞
0

dsdtdu θ(t > s)θ(u > t)e
−im

(
s1
√
β2
1−i0+s2

√
β2
2−i0+s3

√
β2
3−i0+(s+t+u)

√
β2
4−i0

)
(
−(β4s− β1s1)2

)ε−1 (−(β4t− β2s2)2
)ε−1 (−(β4u− β3s3)2

)ε−1
(B.20)

Defining si

√
β2i − i0 = σi and s

√
β24 − i0 = σ, t

√
β24 − i0 = τ , u

√
β24 − i0 = µ we get:

FB(1,1,1,3) =
g6sN 3

8
γ14γ24γ34

∫ ∞
0

dσ1dσ2dσ3∫ ∞
0

dsdtdu θ(τ > σ)θ(µ > τ)e−i(m−i0)(σ1+σ2+σ3+σ+τ+µ)(
−σ2 − σ21 + γ14σσ1

)ε−1 (−τ2 − σ22 + γ24τσ2
)ε−1 (−µ2 − σ23 + γ34µσ3

)ε−1
(B.21)
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Next defining λ1 = σ + σ1, λ2 = τ + σ2 and λ3 = µ + σ3 and x = σ/λ1, y = τ/λ2 and

z = µ/λ3 we get:

FB(1,1,1,3) =
g6sN 3

8
γ14γ24γ34

∫ ∞
0

dλ1λ1(−λ21)ε−1dλ2λ2(−λ22)ε−1dλ3λ3(−λ23)ε−1∫ 1

0
dxdydz θ(yλ2 > xλ1)θ(zλ3 > yλ2)e

−i(m−i0)(λ1+λ2+λ3)P (x, γ14)P (y, γ24)P (z, γ34)

(B.22)

Finally parametrizing λi as follows:

λ1 = ζλ

λ2 = (1− ζ)(1− ω)λ

λ3 = (1− ζ)ωλ

(B.23)

and performing the dimensionful integral over λ we get

FB(1,1,1,3) = Γ(6ε)κ3γ14γ24γ34

∫ 1

0
dxdydz P (x, γ14)P (y, γ24)P (z, γ34)

×
∫ 1

0
dζdωζ2ε−1(1− ζ)4ε−1 ω2ε−1(1− ω)2ε−1 θ(y(1− ζ)(1− ω) > xζ) θ(zω > y(1− ω)) .

(B.24)

Performing the integral over ζ and then the one over ω we get the following result for the

singular terms:

FB(1,1,1,3) =
Γ(6ε)

(2ε)2
κ3γ14γ24γ34

∫ 1

0
dxdydz P (x, γ14)P (y, γ24)P (z, γ34)(y

x

)2ε [3

2
−
(y
z

)2ε
− 12ε2

(
Li2

(
−y
z

)
+ ζ2

)
+O(ε3)

]
.

(B.25)

As mentioned above we can get the results for the momentum dependent part of all dia-

grams by using permutations. We can write in general, for diagram d = A..F ,

F(1,1,1,3);d =
Γ(6ε)

(2ε)2
κ3γ14γ24γ34

∫ 1

0
dxdydz P (x, γ14)P (y, γ24)P (z, γ34) fd(x, y, z; ε) (B.26)

with

fA(x, y, z; ε) = fB(x, z, y; ε) =
1

2
+ (− ln(x) + 2 ln(y)− ln(z)) ε +

(
ln(z)2 − 4 ln(y) ln(z)+

4 ln(y)2 + 12Li2(−y/z) + 2 ln(z) ln(x) + ln(x)2 − 4 ln(x) ln(y)
)
ε2 + O(ε3)

(B.27a)

fB(x, y, z; ε) = fB(x, z, y; ε) =
1

2
+ (− ln(x)− ln(y) + 2 ln(z)) ε +

(
ln(y)2 − 4 ln(y) ln(z)+

4 ln(z)2 − 4 ln(z) ln(x) + ln(x)2 + 2 ln(x) ln(y) + 12Li2(−z/x)
)
ε2

(B.27b)
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fC(x, y, z; ε) = fB(y, x, z; ε) =
1

2
+ (− ln(x)− ln(y) + 2 ln(z)) ε +

(
ln(y)2 − 4 ln(y) ln(z)+

4 ln(z)2 − 4 ln(z) ln(x) + ln(x)2 + 2 ln(x) ln(y) + 12Li2(−z/x)
)
ε2 + O(ε3)

(B.27c)

fD(x, y, z; ε) = fA(y, x, z; ε) =
1

2
+ (2 ln(x)− ln(y)− ln(z)) ε +

(
ln(z)2 − 4 ln(z) ln(x)+

4 ln(x)2 + 12Li2(−x/z) + 2 ln(y) ln(z) + ln(y)2 − 4 ln(x) ln(y)
)
ε2 + O(ε3)

(B.27d)

fE(x, y, z; ε) = fA(z, y, x; ε) =
1

2
+ (− ln(x) + 2 ln(y)− ln(z)) ε +

(
ln(x)2 − 4 ln(x) ln(y)+

4 ln(y)2 + 12Li2(−y/x) + 2 ln(z) ln(x) + ln(z)2 − 4 ln(y) ln(z)
)
ε2 + O(ε3)

(B.27e)

fF (x, y, z; ε) = fB(z, y, x; ε) =
1

2
+ (2 ln(x)− ln(y)− ln(z)) ε +

(
ln(y)2 − 4 ln(x) ln(y)+

4 ln(x)2 + 12Li2(−x/y) + 2 ln(y) ln(z) + ln(z)2 − 4 ln(z) ln(x)
)
ε2 + O(ε3)

(B.27f)

Using now the results for the mixing matrix and connected colour factors of this web we

get the final results quoted in eqs. (A.23) and (A.24).

C Subtracted webs at three loops

Using eq. (1.15c) we observe that for three-loop webs consisting of three gluon exchanges

one gets a contribution to the three-loop soft anomalous dimension, of the form −6w(3,−1)

where w(3,−1) is the subtracted web given by eq. (5.3). In appendix B we derived the web

kernels for the 1-2-2-1 and 1-1-1-3 webs, and we are now ready to combine these integrands

with those corresponding to the commutator terms. All the necessary input is summarised

in appendix A. Let us consider the two webs in turn.

C.1 Combining the 1-2-2-1 web with the corresponding commutators

Using eq. (5.3) for the 1-2-2-1 web, and selecting the commutators of lower-order webs

which correspond to its subdiagrams, we obtain:

w
(3,−1)
(122334)=w(3,−1)(122334)− 1

6

{
3
[
w(1,0)(12), w(2,−1)(2334)

]
+ 3

[
w(1,0)(34), w(2,−1)(1223)

]
+ 3

[
w(2,0)(2334), w(1,−1)(12)

]
+ 3

[
w(2,0)(1223), w(1,−1)(34)

]
+
[
w(1,0)(12),

[
w(1,−1)(23), w(1,0)(34)

]]
+
[
w(1,0)(12),

[
w(1,−1)(34), w(1,0)(23)

]]
+
[
w(1,0)(34),

[
w(1,−1)(23), w(1,0)(12)

]]
+
[
w(1,0)(34),

[
w(1,−1)(12), w(1,0)(23)

]]
+
[
w(1,−1)(12),

[
w(1,1)(23), w(1,−1)(34)

]]
+
[
w(1,−1)(12),

[
w(1,1)(34), w(1,−1)(23)

]]
+
[
w(1,−1)(34),

[
w(1,1)(23), w(1,−1)(12)

]]
+
[
w(1,−1)(34),

[
w(1,1)(12), w(1,−1)(23)

]]}
.

(C.1)
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Upon substituting the webs in terms of colour times kinematic factors we get:

w
(3,−1)
(122334)α

3
s =

1

6
fabef cdeT a1 T

b
2T

c
3T

d
4

[
6F (3,−1)

122334(α12, α23, α34)

+ 3F (1,0)
12 (α12)F (2,−1)

2334 (α23, α34)− 3F (1,0)
34 (α34)F (2,−1)

1223 (α12, α23)

− 3F (1,−1)
12 (α12)F (2,0)

2334 (α23, α34) + 3F (1,−1)
34 (α34)F (2,0)

1223 (α12, α23)

+ F (1,0)
12 (α12)

(
F (1,−1)
23 (α23)F (1,0)

34 (α34)−F (1,−1)
34 (α34)F (1,0)

23 (α23)
)

+ F (1,0)
34 (α34)

(
F (1,−1)
23 (α23)F (1,0)

12 (α12)−F (1,−1)
12 (α12)F (1,0)

23 (α23)
)

+ F (1,−1)
12 (α12)

(
F (1,1)
23 (α23)F (1,−1)

34 (α34)−F (1,1)
34 (α34)F (1,−1)

23 (α23)
)

+ F (1,−1)
34 (α34)

(
F (1,1)
23 (α23)F (1,−1)

12 (α12)−F (1,1)
12 (α12)F (1,−1)

23 (α23)
)]

.

(C.2)

Next, substituting the integrals for the kinematic functions F summarized in appendix A

we get:

w
(3,−1)
(122334)α

3
s =

1

6
fabef cdeT a1 T

b
2T

c
3T

d
4

(κ
2

)3 ∫ 1

0
dxdydz p0(x, αij)p0(y, αjk)p0(z, αkl)[

ψ
(1)
3 (x, y, z) + ψ

(0)
3 (x, y, z)

(
ln q(x, α12) + ln q(y, α23) + ln q(z, α34)

)
+ 3

(
φ
(1)
2 (x, y)− φ(1)2 (y, z)

)
+ 3

(
φ
(0)
2 (x, y)− φ(0)2 (y, z)

)
ln q(y, α23)

+ 3 (ln q(x, α12)− ln q(z, α34))
(
φ
(0)
2 (x, y) + φ

(0)
2 (y, z)

)
+ 2 ln q(x, α12) ln q(z, α34)− ln q(y, α23) ln q(x, α12)− ln q(y, α23) ln q(z, α34)

− 1

2
ln2 q(x, α12) + ln2 q(y, α23)−

1

2
ln2 q(z, α34)

]
.

(C.3)

Using the expressions for the kernels ψ3 and φ2 we get after some algebra:

w
(3,−1)
(122334)α

3
s =

1

6
fabef cdeT a1 T

b
2T

c
3T

d
4

(κ
2

)3 ∫ 1

0
dxdydz p0(x, αij)p0(y, αjk)p0(z, αkl)[(

−2 ln2 y

x
− 2 ln2 1− y

z
+ 8 ln

y

x
ln

1− y
z

)
+ 2

(
ln
x

y
+ ln

z

y

)
ln q(y, α23)

+ 2
(

ln
x

z
+ ln

y

z

)
ln q(x, α12) + 2

(
ln
z

x
+ ln

y

x

)
ln q(z, α34)

+ 2 ln q(x, α12) ln q(z, α34)− ln q(y, α23) ln q(x, α12)− ln q(y, α23) ln q(z, α34)

− 1

2
ln2 q(x, α12) + ln2 q(y, α23)−

1

2
ln2 q(z, α34)

]
.

(C.4)
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Here we note that all dilogarithms cancel in the difference between the three loop webs

and the commutators involving lower-order webs. The consequence is that the integrand

of eq. (C.4) contains only logarithms, so in each term in the sum the three integrals over x,

y and z factorize, and can be performed independently of each other. Finally, substituting

the results for the integrals according to the definitions in table 1 and replacing κ
2 by its

ε = 0 limit of − g2s
16π2 , we get:

w
(3,−1)
(122334)α

3
s = −1

6
fabef cdeT a1 T

b
2T

c
3T

d
4

(
g2s

16π2

)3

G(α12, α23, α34) . (C.5)

where

G(α12, α23, α34) =
1 + α2

12

1− α2
12

1 + α2
23

1− α2
23

1 + α2
34

1− α2
34

[
16
(
S2(α23)− 2S̃2(α23)

)
lnα12 lnα34

− 2S1(α23)
(
S1(α12) lnα34 + S1(α34) lnα12

)
+ 4 lnα23

(
2S2(α12) lnα34 + 2S2(α34) lnα12 + S1(α12)S1(α34)

)
− 4

(
R1(α23)

(
S1(α12) lnα34 + S1(α34) lnα12

)
+ 4V2(α23) lnα12 lnα34

)

+ 4

(
2V2(α12) lnα23 lnα34 −R1(α12)

(
S1(α23) lnα34 − 2S1(α34) lnα23

))

+ 4

(
2V2(α34) lnα23 lnα12 −R1(α34)

(
S1(α23) lnα12 − 2S1(α12) lnα23

))
+ 8 lnα23

(
2R1(α12)R1(α34)−R2(α12) lnα34 −R2(α34) lnα12

)
− 8R1(α23)

(
R1(α12) lnα34 +R1(α34) lnα12

)
+ 16R2(α23) lnα12 lnα34

]
(C.6)

where G has the symmetry property: G(α12, α23, α34) = G(α34, α23, α12). We see that

owing to the factorization property of the subtracted webs the result is written as a sum of

factorized terms, each of which is a function of a single cusp angle. There are no multiple

polylogarithms that depend on more than one cusp angle. As explained in the main text

this is expected to be a general feature of multiple-gluon-exchange webs.

Eq. (C.6) is written in terms of the functions Ri, Si etcetera, defined in table 1. As

discussed in section 4, each of these functions separately violates the alphabet conjecture,

and in particular does not display the crossing symmetry α→ −α. Yet the symmetry must

be present in eq. (C.6), which is a subtracted web. It can be made manifest by selecting

the basis of functions of eq. (4.15). Indeed, the result for G can be written in this basis –

it is given in eq. (5.5), which is much more compact than eq. (C.6). Besides demonstrating

the conclusions of section 4, this last step provides a powerful consistency check of the

calculation.

– 55 –



C.2 Combining the 1-1-1-3 web with the corresponding commutators

Let us now consider the 1-1-1-3 web. Using eq. (5.3) and selecting the relevant commutators

of lower-order webs we obtain:

w
(3,−1)
(123444) = w(3,−1)(123444)− 1

6
×{

3
[
w(1,0)(14), w(2,−1)(2344)

]
+ 3

[
w(1,0)(24), w(2,−1)(1344)

]
+ 3

[
w(1,0)(34), w(2,−1)(1244)

]
+3
[
w(2,0)(2344), w(1,−1)(14)

]
+ 3

[
w(2,0)(1344), w(1,−1)(24)

]
+ 3

[
w(2,0)(1244), w(1,−1)(34)

]
+
[
w(1,0)(34),

[
w(1,−1)(14), w(1,0)(24)

]]
+
[
w(1,0)(34),

[
w(1,−1)(24), w(1,0)(14)

]]
+
[
w(1,0)(24),

[
w(1,−1)(14), w(1,0)(34)

]]
+
[
w(1,0)(24),

[
w(1,−1)(34), w(1,0)(14)

]]
+
[
w(1,0)(14),

[
w(1,−1)(34), w(1,0)(24)

]]
+
[
w(1,0)(14),

[
w(1,−1)(24), w(1,0)(34)

]]
+
[
w(1,−1)(34),

[
w(1,1)(14), w(1,−1)(24)

]]
+
[
w(1,−1)(34),

[
w(1,1)(24), w(1,−1)(14)

]]
+
[
w(1,−1)(24),

[
w(1,1)(14), w(1,−1)(34)

]]
+
[
w(1,−1)(24),

[
w(1,1)(34), w(1,−1)(14)

]]
+
[
w(1,−1)(14),

[
w(1,1)(34), w(1,−1)(24)

]]
+
[
w(1,−1)(14),

[
w(1,1)(24), w(1,−1)(34)

]]}
. (C.7)

Upon substituting the webs in terms of colour time kinematic factors we get:

w
(3,−1)
(123444)α

3
s =

1

6
fadef bceT a1 T

b
2T

c
3T

d
4

[
6F (3,−1)

123444;1(α14, α24, α34)

− 3F (1,0)
14 (α14)F (2,−1)

2344 (α24, α34) + 3F (1,−1)
14 (α14)F (2,0)

2344 (α24, α34)

+ F (1,0)
14 (α14)

(
F (1,−1)
34 (α34)F (1,0)

24 (α24)−F (1,−1)
24 (α24)F (1,0)

34 (α34)
)

+ F (1,−1)
14 (α14)

(
F (1,1)
34 (α34)F (1,−1)

24 (α24)−F (1,1)
24 (α24)F (1,−1)

34 (α34)
)]

+
1

6
facef bdeT a1 T

b
2T

c
3T

d
4

[
6F (3,−1)

123444;2(α14, α24, α34)

− 3F (1,0)
24 (α24)F (2,−1)

1344 (α14, α34) + 3F (1,−1)
24 (α24)F (2,0)

1344 (α14, α34)

−F (1,0)
24 (α24)

(
F (1,−1)
14 (α14)F (1,0)

34 (α34)−F (1,−1)
34 (α34)F (1,0)

14 (α14)
)

−F (1,−1)
24 (α24)

(
F (1,1)
14 (α14)F (1,−1)

34 (α34)−F (1,1)
34 (α34)F (1,−1)

14 (α14)
)]

+
1

6
fabef cdeT a1 T

b
2T

c
3T

d
4

[
− 3F (1,0)

34 (α34)F (2,−1)
1244 (α14, α24) + 3F (1,−1)

34 (α34)F (2,0)
1244 (α14, α24)

−F (1,0)
34 (α34)

(
F (1,−1)
14 (α14)F (1,0)

24 (α24)−F (1,−1)
24 (α24)F (1,0)

14 (α14)
)

−F (1,−1)
34 (α34)

(
F (1,1)
14 (α14)F (1,−1)

24 (α24)−F (1,1)
24 (α24)F (1,−1)

14 (α14)
)]

(C.8)
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where by convention Fijkk = Fikkj . At this point we use the fact that the three colour

factors are related via the Jacobi identity:

fabef cdeT a1 T
b
2T

c
3T

d
4 = facef bdeT a1 T

b
2T

c
3T

d
4 − fadef bceT a1 T b2T c3T d4 (C.9)

to write the result in terms of two independent colour factors. Substituting the functions

F as summarized in appendix A and inserting the explicit expressions φ3,i and φ2 we get:

w
(3,−1)
(123444)α

3
s =

1

6

(κ
2

)3 ∫ 1

0
dxdydz p0(x, α14)p0(y, α24)p0(z, α34)×{

fadef bceT a1 T
b
2T

c
3T

d
4

[
2 ln2 x − 4 ln2 y + 2 ln2 z + 4 lnx ln y + 4 ln y ln z − 8 lnx ln z

+ 2 ln q(x, α14)
(

ln
z

x
+ ln

z

y

)
+ 2 ln q(y, α24)

(
ln
y

x
+ ln

y

z

)
+ 2 ln q(z, α34)

(
ln
x

y
+ ln

x

z

)
+ ln q(x, α14) ln q(y, α24)− 2 ln q(x, α14) ln q(z, α34) + ln q(z, α34) ln q(y, α24)

+
1

2
ln2 q(z, α34)− ln2 q(y, α24) +

1

2
ln2 q(x, α14)

]
+ facef bdeT a1 T

b
2T

c
3T

d
4

[
− 4 ln2 x + 2 ln2 y + 2 ln2 z + 4 lnx ln y − 8 ln y ln z + 4 lnx ln z

+ 2 ln q(x, α14)
(

ln
x

y
+ ln

x

z

)
+ 2 ln q(y, α24)

(
ln
z

y
+ ln

z

x

)
+ 2 ln q(z, α34)

(
ln
y

x
+ ln

y

z

)
+ ln q(y, α24) ln q(x, α14)− 2 ln q(y, α24) ln q(z, α34) + ln q(z, α34) ln q(x, α14)

+
1

2
ln2 q(z, α34)− ln2 q(x, α14) +

1

2
ln2 q(y, α24)

]}
where we observe again the complete cancellation of the dilogrithms, which results in the

integrals being factorisable. Performing the three integrals, the final result reads:

w
(3,−1)
(123444)α

3
s = −1

6

(
g2

16π2

)3

T a1 T
b
2T

c
3T

d
4

[
fadef bceF (α14, α24, α34) + facef bde F (α24, α14, α34)

]

with F (α14, α24, α34) =
1 + α2

14

1− α2
14

1 + α2
24

1− α2
24

1 + α2
34

1− α2
34

× (C.10)[
− 8S2(α14) lnα24 lnα34 + 16S2(α24) lnα14 lnα34 − 8S2(α34) lnα14 lnα24

+2S1(α14)S1(α24) lnα34 + 2S1(α24)S1(α34) lnα14 − 4S1(α14)S1(α34) lnα24

−8V2(α14) lnα24 lnα34 + 4R1(α14)
(
S1(α24) lnα34 − 2S1(α34) lnα24

)
+16V2(α24) lnα14 lnα34 + 4R1(α24)

(
S1(α14) lnα34 + S1(α34) lnα14

)
−8V2(α34) lnα24 lnα14 + 4R1(α34)

(
S1(α24) lnα14 − 2S1(α14) lnα24

)
+8R1(α14)R1(α24) lnα34 + 8R1(α24)R1(α34) lnα14 − 16R1(α14)R1(α34) lnα24

+8R2(α34) lnα14 lnα24 − 16R2(α24) lnα14 lnα34 + 8R2(α14) lnα24 lnα34

]
.

Proceeding as in the case of the 1-2-2-1 web to write the function F above using the basis

functions of eq. (4.15) which admit the alphabet conjecture, we get the very elegant result

of eq. (5.9). This step provides a powerful consistency check of the entire calculation.
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