483 research outputs found
Gauge Theory Wilson Loops and Conformal Toda Field Theory
The partition function of a family of four dimensional N=2 gauge theories has
been recently related to correlation functions of two dimensional conformal
Toda field theories. For SU(2) gauge theories, the associated two dimensional
theory is A_1 conformal Toda field theory, i.e. Liouville theory. For this case
the relation has been extended showing that the expectation value of gauge
theory loop operators can be reproduced in Liouville theory inserting in the
correlators the monodromy of chiral degenerate fields. In this paper we study
Wilson loops in SU(N) gauge theories in the fundamental and anti-fundamental
representation of the gauge group and show that they are associated to
monodromies of a certain chiral degenerate operator of A_{N-1} Toda field
theory. The orientation of the curve along which the monodromy is evaluated
selects between fundamental and anti-fundamental representation. The analysis
is performed using properties of the monodromy group of the generalized
hypergeometric equation, the differential equation satisfied by a class of four
point functions relevant for our computation.Comment: 17 pages, 3 figures; references added
Teaching energy conservation as a unifying principle in physics
In this work we present the design and assessment of a teaching sequence aimed at introducing the principle of energy conservation at post-compulsory secondary school level (16-18 year olds). The proposal is based on the result of research into teaching-learning difficulties and on the analysis of the physics framework. Evidence is shown that this teaching sequence, together with the methodology used in the classroom, may result in students having a better grasp of the principle of energy conservation. Keywords Physics education · Energy conceptions · Teaching activitie
Insights into the Ecology and Evolutionary Success of Crocodilians Revealed through Bite-Force and Tooth-Pressure Experimentation
BackgroundCrocodilians have dominated predatory niches at the water-land interface for over 85 million years. Like their ancestors, living species show substantial variation in their jaw proportions, dental form and body size. These differences are often assumed to reflect anatomical specialization related to feeding and niche occupation, but quantified data are scant. How these factors relate to biomechanical performance during feeding and their relevance to crocodilian evolutionary success are not known.Methodology/Principal FindingsWe measured adult bite forces and tooth pressures in all 23 extant crocodilian species and analyzed the results in ecological and phylogenetic contexts. We demonstrate that these reptiles generate the highest bite forces and tooth pressures known for any living animals. Bite forces strongly correlate with body size, and size changes are a major mechanism of feeding evolution in this group. Jaw shape demonstrates surprisingly little correlation to bite force and pressures. Bite forces can now be predicted in fossil crocodilians using the regression equations generated in this research.Conclusions/SignificanceCritical to crocodilian long-term success was the evolution of a high bite-force generating musculo-skeletal architecture. Once achieved, the relative force capacities of this system went essentially unmodified throughout subsequent diversification. Rampant changes in body size and concurrent changes in bite force served as a mechanism to allow access to differing prey types and sizes. Further access to the diversity of near-shore prey was gained primarily through changes in tooth pressure via the evolution of dental form and distributions of the teeth within the jaws. Rostral proportions changed substantially throughout crocodilian evolution, but not in correspondence with bite forces. The biomechanical and ecological ramifications of such changes need further examination
Optical Magnetometry
Some of the most sensitive methods of measuring magnetic fields utilize
interactions of resonant light with atomic vapor. Recent developments in this
vibrant field are improving magnetometers in many traditional areas such as
measurement of geomagnetic anomalies and magnetic fields in space, and are
opening the door to new ones, including, dynamical measurements of bio-magnetic
fields, detection of nuclear magnetic resonance (NMR), magnetic-resonance
imaging (MRI), inertial-rotation sensing, magnetic microscopy with cold atoms,
and tests of fundamental symmetries of Nature.Comment: 11 pages; 4 figures; submitted to Nature Physic
The Effects of Biting and Pulling on the Forces Generated during Feeding in the Komodo Dragon (Varanus komodoensis)
In addition to biting, it has been speculated that the forces resulting from pulling on food items may also contribute to feeding success in carnivorous vertebrates. We present an in vivo analysis of both bite and pulling forces in Varanus komodoensis, the Komodo dragon, to determine how they contribute to feeding behavior. Observations of cranial modeling and behavior suggest that V. komodoensis feeds using bite force supplemented by pulling in the caudal/ventrocaudal direction. We tested these observations using force gauges/transducers to measure biting and pulling forces. Maximum bite force correlates with both body mass and total body length, likely due to increased muscle mass. Individuals showed consistent behaviors when biting, including the typical medial-caudal head rotation. Pull force correlates best with total body length, longer limbs and larger postcranial motions. None of these forces correlated well with head dimensions. When pulling, V. komodoensis use neck and limb movements that are associated with increased caudal and ventral oriented force. Measured bite force in Varanus komodoensis is similar to several previous estimations based on 3D models, but is low for its body mass relative to other vertebrates. Pull force, especially in the ventrocaudal direction, would allow individuals to hunt and deflesh with high success without the need of strong jaw adductors. In future studies, pull forces need to be considered for a complete understanding of vertebrate carnivore feeding dynamics
Green Sturgeon Physical Habitat Use in the Coastal Pacific Ocean
The green sturgeon (Acipenser medirostris) is a highly migratory, oceanic, anadromous species with a complex life history that makes it vulnerable to species-wide threats in both freshwater and at sea. Green sturgeon population declines have preceded legal protection and curtailment of activities in marine environments deemed to increase its extinction risk. Yet, its marine habitat is poorly understood. We built a statistical model to characterize green sturgeon marine habitat using data from a coastal tracking array located along the Siletz Reef near Newport, Oregon, USA that recorded the passage of 37 acoustically tagged green sturgeon. We classified seafloor physical habitat features with high-resolution bathymetric and backscatter data. We then described the distribution of habitat components and their relationship to green sturgeon presence using ordination and subsequently used generalized linear model selection to identify important habitat components. Finally, we summarized depth and temperature recordings from seven green sturgeon present off the Oregon coast that were fitted with pop-off archival geolocation tags. Our analyses indicated that green sturgeon, on average, spent a longer duration in areas with high seafloor complexity, especially where a greater proportion of the substrate consists of boulders. Green sturgeon in marine habitats are primarily found at depths of 20–60 meters and from 9.5–16.0°C. Many sturgeon in this study were likely migrating in a northward direction, moving deeper, and may have been using complex seafloor habitat because it coincides with the distribution of benthic prey taxa or provides refuge from predators. Identifying important green sturgeon marine habitat is an essential step towards accurately defining the conditions that are necessary for its survival and will eventually yield range-wide, spatially explicit predictions of green sturgeon distribution
Clinical pharmacy activities in chronic kidney disease and end-stage renal disease patients: a systematic literature review
<p>Abstract</p> <p>Background</p> <p>Chronic kidney disease (CKD) and end-stage renal disease (ESRD) represent worldwide health problems with an epidemic extent. Therefore, attention must be given to the optimisation of patient care, as gaps in the care of CKD and ESRD patients are well documented. As part of a multidisciplinary patient care strategy, clinical pharmacy services have led to improvements in patient care. The purpose of this study was to summarise the available evidence regarding the role and impact of clinical pharmacy services for these patient populations.</p> <p>Methods</p> <p>A literature search was conducted using the <it>Medline</it>, <it>Embase </it>and <it>International Pharmaceutical Abstracts </it>databases to identify relevant studies on the impact of clinical pharmacists on CKD and ESRD patients, regarding disease-oriented and patient-oriented outcomes, and clinical pharmacist interventions on drug-related problems.</p> <p>Results</p> <p>Among a total of 21 studies, only four (19%) were controlled trials. The majority of studies were descriptive (67%) and before-after studies (14%). Interventions comprised general clinical pharmacy services with a focus on detecting, resolving and preventing drug-related problems, clinical pharmacy services with a focus on disease management, or clinical pharmacy services with a focus on patient education in order to increase medication knowledge. Anaemia was the most common comorbidity managed by clinical pharmacists, and their involvement led to significant improvement in investigated disease-oriented outcomes, for example, haemoglobin levels. Only four of the studies (including three controlled trials) presented data on patient-oriented outcomes, for example, quality of life and length of hospitalisation. Studies investigating the number and type of clinical pharmacist interventions and physician acceptance rates reported a mean acceptance rate of 79%. The most common reported drug-related problems were incorrect dosing, the need for additional pharmacotherapy, and medical record discrepancies.</p> <p>Conclusions</p> <p>Few high-quality trials addressing the benefit and impact of clinical pharmacy services in CKD and ESRD patients have been published. However, all available studies reported some positive impact resulting from clinical pharmacist involvement, including various investigated outcome measures that could be improved. Additional randomised controlled trials investigating patient-oriented outcomes are needed to further determine the role of clinical pharmacists and the benefits of clinical pharmacy services to CKD and ESRD patients.</p
Systematics of the cusp anomalous dimension
We study the velocity-dependent cusp anomalous dimension in supersymmetric
Yang-Mills theory. In a paper by Correa, Maldacena, Sever, and one of the
present authors, a scaling limit was identified in which the ladder diagrams
are dominant and are mapped onto a Schrodinger problem. We show how to solve
the latter in perturbation theory and provide an algorithm to compute the
solution at any loop order. The answer is written in terms of harmonic
polylogarithms. Moreover, we give evidence for two curious properties of the
result. Firstly, we observe that the result can be written using a subset of
harmonic polylogarithms only, at least up to six loops. Secondly, we show that
in a light-like limit, only single zeta values appear in the asymptotic
expansion, again up to six loops. We then extend the analysis of the scaling
limit to systematically include subleading terms. This leads to a
Schrodinger-type equation, but with an inhomogeneous term. We show how its
solution can be computed in perturbation theory, in a way similar to the
leading order case. Finally, we analyze the strong coupling limit of these
subleading contributions and compare them to the string theory answer. We find
agreement between the two calculations.Comment: 33 pages, 4 figures. Complete LO six-loop result added. Typos
corrected. Version accepted for publicatio
Discerning Tumor Status from Unstructured MRI Reports—Completeness of Information in Existing Reports and Utility of Automated Natural Language Processing
Information in electronic medical records is often in an unstructured free-text format. This format presents challenges for expedient data retrieval and may fail to convey important findings. Natural language processing (NLP) is an emerging technique for rapid and efficient clinical data retrieval. While proven in disease detection, the utility of NLP in discerning disease progression from free-text reports is untested. We aimed to (1) assess whether unstructured radiology reports contained sufficient information for tumor status classification; (2) develop an NLP-based data extraction tool to determine tumor status from unstructured reports; and (3) compare NLP and human tumor status classification outcomes. Consecutive follow-up brain tumor magnetic resonance imaging reports (2000–Â2007) from a tertiary center were manually annotated using consensus guidelines on tumor status. Reports were randomized to NLP training (70%) or testing (30%) groups. The NLP tool utilized a support vector machines model with statistical and rule-based outcomes. Most reports had sufficient information for tumor status classification, although 0.8% did not describe status despite reference to prior examinations. Tumor size was unreported in 68.7% of documents, while 50.3% lacked data on change magnitude when there was detectable progression or regression. Using retrospective human classification as the gold standard, NLP achieved 80.6% sensitivity and 91.6% specificity for tumor status determination (mean positive predictive value, 82.4%; negative predictive value, 92.0%). In conclusion, most reports contained sufficient information for tumor status determination, though variable features were used to describe status. NLP demonstrated good accuracy for tumor status classification and may have novel application for automated disease status classification from electronic databases
DNA sense-and-respond protein modules for mammalian cells
We generated synthetic protein components that can detect specific DNA sequences and subsequently trigger a desired intracellular response. These modular sensors exploit the programmability of zinc-finger DNA recognition to drive the intein-mediated splicing of an artificial trans-activator that signals to a genetic circuit containing a given reporter or response gene. We used the sensors to mediate sequence recognition−induced apoptosis as well as to detect and report a viral infection. This work establishes a synthetic biology framework for endowing mammalian cells with sentinel capabilities, which provides a programmable means to cull infected cells. It may also be used to identify positively transduced or transfected cells, isolate recipients of intentional genomic edits and increase the repertoire of inducible parts in synthetic biology.United States. Defense Advanced Research Projects Agency (DARPA-BAA-11-23)Defense Threat Reduction Agency (DTRA) (HDTRA1-14-1-0006)United States. Air Force Office of Scientific Research (FA9550-14-1-0060
- …