300 research outputs found

    RELICS: The Reionization Lensing Cluster Survey and the Brightest High-z Galaxies

    Get PDF
    Massive foreground galaxy clusters magnify and distort the light of objects behind them, permitting a view into both the extremely distant and intrinsically faint galaxy populations. We present here the z ~ 6-8 candidate high-redshift galaxies from the Reionization Lensing Cluster Survey (RELICS), a Hubble and Spitzer Space Telescope survey of 41 massive galaxy clusters spanning an area of ≈200 arcmin². These clusters were selected to be excellent lenses, and we find similar high-redshift sample sizes and magnitude distributions as the Cluster Lensing And Supernova survey with Hubble (CLASH). We discover 257, 57, and eight candidate galaxies at z ~ 6, 7, and 8 respectively, (322 in total). The observed (lensed) magnitudes of the z ~ 6 candidates are as bright as AB mag ~23, making them among the brightest known at these redshifts, comparable with discoveries from much wider, blank-field surveys. RELICS demonstrates the efficiency of using strong gravitational lenses to produce high-redshift samples in the epoch of reionization. These brightly observed galaxies are excellent targets for follow-up study with current and future observatories, including the James Webb Space Telescope

    The first spectral line surveys searching for signals from the Dark Ages

    Get PDF
    Our aim is to observationally investigate the cosmic Dark Ages in order to constrain star and structure formation models, as well as the chemical evolution in the early Universe. Spectral lines from atoms and molecules in primordial perturbations at high redshifts can give information about the conditions in the early universe before and during the formation of the first stars in addition to the epoch of reionisation. The lines may arise from moving primordial perturbations before the formation of the first stars (resonant scattering lines), or could be thermal absorption or emission lines at lower redshifts. The difficulties in these searches are that the source redshift and evolutionary state, as well as molecular species and transition are unknown, which implies that an observed line can fall within a wide range of frequencies. The lines are also expected to be very weak. Observations from space have the advantages of stability and the lack of atmospheric features which is important in such observations. We have therefore, as a first step in our searches, used the Odin satellite to perform two sets of spectral line surveys towards several positions. The first survey covered the band 547-578 GHz towards two positions, and the second one covered the bands 542.0-547.5 GHz and 486.5-492.0 GHz towards six positions selected to test different sizes of the primordial clouds. Two deep searches centred at 543.250 and 543.100 GHz with 1 GHz bandwidth were also performed towards one position. The two lowest rotational transitions of H2 will be redshifted to these frequencies from z~20-30, which is the predicted epoch of the first star formation. No lines are detected at an rms level of 14-90 and 5-35 mK for the two surveys, respectively, and 2-7 mK in the deep searches with a channel spacing of 1-16 MHz. The broad bandwidth covered allows a wide range of redshifts to be explored for a number of atomic and molecular species and transitions. From the theoretical side, our sensitivity analysis show that the largest possible amplitudes of the resonant lines are about 1 mK at frequencies <200 GHz, and a few micro K around 500-600 GHz, assuming optically thick lines and no beam-dilution. However, if existing, thermal absorption lines have the potential to be orders of magnitude stronger than the resonant lines. We make a simple estimation of the sizes and masses of the primordial perturbations at their turn-around epochs, which previously has been identified as the most favourable epoch for a detection. This work may be considered as an important pilot study for our forthcoming observations with the Herschel Space Observatory.Comment: 15 pages, 9 figures, 3 on-line pages. Accepted for publication in Astronomy & Astrophysics 8 March 2010

    Progestin Receptor-Mediated Reduction of Anxiety-Like Behavior in Male Rats

    Get PDF
    BACKGROUND: It is well known progesterone can have anxiolytic-like effects in animals in a number of different behavioral testing paradigms. Although progesterone is known to influence physiology and behavior by binding to classical intracellular progestin receptors, progesterone's anxiety reducing effects have solely been attributed to its rapid non-genomic effects at the GABA A receptor. This modulation occurs following the bioconversion of progesterone to allopregnanolone. Seemingly paradoxical results from some studies suggested that the function of progesterone to reduce anxiety-like behavior may not be entirely clear; therefore, we hypothesized that progesterone might also act upon progestin receptors to regulate anxiety. METHODOLOGY/PRINCIPAL FINDINGS: To test this, we examined the anxiolytic-like effects of progesterone in male rats using the elevated plus maze, a validated test of anxiety, and the light/dark chamber in the presence or absence of a progestin receptor antagonist, RU 486. Here we present evidence suggesting that the anxiolytic-like effects of progesterone in male rats can be mediated, in part, by progestin receptors, as these effects are blocked by prior treatment with a progestin receptor antagonist. CONCLUSION/SIGNIFICANCE: This indicates that progesterone can act upon progestin receptors to regulate anxiety-like behavior in the male rat brain

    Intrinsic activity in the fly brain gates visual information during behavioral choices

    Get PDF
    The small insect brain is often described as an input/output system that executes reflex-like behaviors. It can also initiate neural activity and behaviors intrinsically, seen as spontaneous behaviors, different arousal states and sleep. However, less is known about how intrinsic activity in neural circuits affects sensory information processing in the insect brain and variability in behavior. Here, by simultaneously monitoring Drosophila's behavioral choices and brain activity in a flight simulator system, we identify intrinsic activity that is associated with the act of selecting between visual stimuli. We recorded neural output (multiunit action potentials and local field potentials) in the left and right optic lobes of a tethered flying Drosophila, while its attempts to follow visual motion (yaw torque) were measured by a torque meter. We show that when facing competing motion stimuli on its left and right, Drosophila typically generate large torque responses that flip from side to side. The delayed onset (0.1-1 s) and spontaneous switch-like dynamics of these responses, and the fact that the flies sometimes oppose the stimuli by flying straight, make this behavior different from the classic steering reflexes. Drosophila, thus, seem to choose one stimulus at a time and attempt to rotate toward its direction. With this behavior, the neural output of the optic lobes alternates; being augmented on the side chosen for body rotation and suppressed on the opposite side, even though the visual input to the fly eyes stays the same. Thus, the flow of information from the fly eyes is gated intrinsically. Such modulation can be noise-induced or intentional; with one possibility being that the fly brain highlights chosen information while ignoring the irrelevant, similar to what we know to occur in higher animals

    Interphase Nucleo-Cytoplasmic Shuttling and Localization of SIRT2 during Mitosis

    Get PDF
    The human NAD+-dependent protein deacetylase SIRT2 resides predominantly in the cytoplasm where it functions as a tubulin deacetylase. Here we report that SIRT2 maintains a largely cytoplasmic localization during interphase by active nuclear export in a Crm1-dependent manner. We identified a functional, leptomycin B-sensitive, nuclear export signal sequence within SIRT2. During the cell cycle, SIRT2 becomes enriched in the nucleus and is associated with mitotic structures, beginning with the centrosome during prophase, the mitotic spindle during metaphase, and the midbody during cytokinesis. Cells overexpressing wild-type or a catalytically inactive SIRT2 exhibit an increase in multinucleated cells. The findings suggest a novel mechanism of regulating SIRT2 function by nucleo-cytoplasmic shuttling, as well as a role for SIRT2 in the nucleus during interphase and throughout mitosis

    Morphological characterization of the blood cells in the endangered Sicilian endemic pond turtle,Emys trinacris(Testudines: Emydidae)

    Get PDF
    In this study, measurements of morphological parameters, sizes and frequencies of peripheral blood cells (erythrocytes, leukocytes, thrombocytes) on blood smear preparation devices stained with May-Grünwald stain were evaluated for both sexes in 20 Emys trinacris (Testudines: Emydidae) specimens. Erythrocytes were higher in male than in female specimens. The leukocyte of E. trinacris contains eosinophil, basophil, monocyte, heterophil and lymphocyte. The eosinophil was higher in males than in females whereas lymphocytes were higher in females than in males. The erythrocyte morphological parameters (EL [erythrocyte length], EW [erythrocyte width], L/W [length/width], ES [erythrocyte size]) were compared with the same data from Emys orbicularis s.l, and from species belonging to other chelonian genera. The erythrocyte size did not vary within the studied Palearctic Emys taxa, whereas it proved to differ from that observed in other chelonians

    Immune stress in late pregnant rats decreases length of gestation and fecundity, and alters later cognitive and affective behaviour of surviving pre-adolescent offspring

    Get PDF
    Immune challenge during pregnancy is associated with preterm birth and poor perinatal development. The mechanisms of these effects are not known. 5α-Pregnan-3α-ol-20-one (3α,5α-THP), the neuroactive metabolite of progesterone, is critical for neurodevelopment and stress responses, and can influence cognition and affective behaviours. To develop an immune challenge model of preterm birth, pregnant Long–Evans rat dams were administered lipopolysaccharide [LPS; 30 μg/kg/ml, intraperitoneal (IP)], interleukin-1β (IL-1β; 1 μg/rat, IP) or vehicle (0.9% saline, IP) daily on gestational days 17–21. Compared to control treatment, prenatal LPS or IL-1β reduced gestational length and the number of viable pups born. At 28–30 days of age, male and female offspring of mothers exposed to prenatal IL-1β had reduced cognitive performance in the object recognition task compared to controls. In females, but not males, prenatal IL-1β reduced anxiety-like behaviour, indicated by entries to the centre of an open field. In the hippocampus, progesterone turnover to its 5α-reduced metabolites was lower in prenatally exposed IL-1β female, but not in male offspring. IL-1β-exposed males and females had reduced oestradiol content in hippocampus, medial prefrontal cortex and diencephalon compared to controls. Thus, immune stress during late pregnancy reduced gestational length and negatively impacted birth outcomes, hippocampal function and central neurosteroid formation in the offspring

    Relevance of Stress and Female Sex Hormones for Emotion and Cognition

    Get PDF
    There are clear sex differences in incidence and onset of stress-related and other psychiatric disorders in humans. Yet, rodent models for psychiatric disorders are predominantly based on male animals. The strongest argument for not using female rodents is their estrous cycle and the fluctuating sex hormones per phase which multiplies the number of animals to be tested. Here, we will discuss studies focused on sex differences in emotionality and cognitive abilities in experimental conditions with and without stress. First, female sex hormones such as estrogens and progesterone affect emotions and cognition, contributing to sex differences in behavior. Second, females respond differently to stress than males which might be related to the phase of the estrous cycle. For example, female rats and mice express less anxiety than males in a novel environment. Proestrus females are less anxious than females in the other estrous phases. Third, males perform in spatial tasks superior to females. However, while stress impairs spatial memory in males, females improve their spatial abilities, depending on the task and kind of stressor. We conclude that the differences in emotion, cognition and responses to stress between males and females over the different phases of the estrous cycle should be used in animal models for stress-related psychiatric disorders

    Sirtinol Treatment Reduces Inflammation in Human Dermal Microvascular Endothelial Cells

    Get PDF
    Histone deacetylases (HDAC) are key enzymes in the epigenetic control of gene expression. Recently, inhibitors of class I and class II HDAC have been successfully employed for the treatment of different inflammatory diseases such as rheumatoid arthritis, colitis, airway inflammation and asthma. So far, little is known so far about a similar therapeutic effect of inhibitors specifically directed against sirtuins, the class III HDAC. In this study, we investigated the expression and localization of endogenous sirtuins in primary human dermal microvascular endothelial cells (HDMEC), a cell type playing a key role in the development and maintenance of skin inflammation. We then examined the biological activity of sirtinol, a specific sirtuin inhibitor, in HDMEC response to pro-inflammatory cytokines. We found that, even though sirtinol treatment alone affected only long-term cell proliferation, it diminishes HDMEC inflammatory responses to tumor necrosis factor (TNF)α and interleukin (IL)-1β. In fact, sirtinol significantly reduced membrane expression of adhesion molecules in TNFã- or IL-1β-stimulated cells, as well as the amount of CXCL10 and CCL2 released by HDMEC following TNFα treatment. Notably, sirtinol drastically decreased monocyte adhesion on activated HDMEC. Using selective inhibitors for Sirt1 and Sirt2, we showed a predominant involvement of Sirt1 inhibition in the modulation of adhesion molecule expression and monocyte adhesion on activated HDMEC. Finally, we demonstrated the in vivo expression of Sirt1 in the dermal vessels of normal and psoriatic skin. Altogether, these findings indicated that sirtuins may represent a promising therapeutic target for the treatment of inflammatory skin diseases characterized by a prominent microvessel involvement
    corecore