22 research outputs found

    Observation of the inverse spin Hall effect in silicon

    Get PDF
    The spin–orbit interaction in a solid couples the spin of an electron to its momentum. This coupling gives rise to mutual conversion between spin and charge currents: the direct and inverse spin Hall effects. The spin Hall effects have been observed in metals and semiconductors. However, the spin/charge conversion has not been realized in one of the most fundamental semiconductors, silicon, where accessing the spin Hall effects has been believed to be difficult because of its very weak spin–orbit interaction. Here we report observation of the inverse spin Hall effect in silicon at room temperature. The spin/charge current conversion efficiency, the spin Hall angle, is obtained as 0.0001 for a p-type silicon film. In spite of the small spin Hall angle, we found a clear electric voltage due to the inverse spin Hall effect in the p-Si film, demonstrating that silicon can be used as a spin-current detector

    Climate Change, Coral Reef Ecosystems, and Management Options for Marine Protected Areas

    Get PDF
    Marine protected areas (MPAs) provide place-based management of marine ecosystems through various degrees and types of protective actions. Habitats such as coral reefs are especially susceptible to degradation resulting from climate change, as evidenced by mass bleaching events over the past two decades. Marine ecosystems are being altered by direct effects of climate change including ocean warming, ocean acidification, rising sea level, changing circulation patterns, increasing severity of storms, and changing freshwater influxes. As impacts of climate change strengthen they may exacerbate effects of existing stressors and require new or modified management approaches; MPA networks are generally accepted as an improvement over individual MPAs to address multiple threats to the marine environment. While MPA networks are considered a potentially effective management approach for conserving marine biodiversity, they should be established in conjunction with other management strategies, such as fisheries regulations and reductions of nutrients and other forms of land-based pollution. Information about interactions between climate change and more “traditional” stressors is limited. MPA managers are faced with high levels of uncertainty about likely outcomes of management actions because climate change impacts have strong interactions with existing stressors, such as land-based sources of pollution, overfishing and destructive fishing practices, invasive species, and diseases. Management options include ameliorating existing stressors, protecting potentially resilient areas, developing networks of MPAs, and integrating climate change into MPA planning, management, and evaluation

    Review of the projected impacts of climate change on coastal fishes in southern Africa

    Get PDF
    The coastal zone represents one of the most economically and ecologically important ecosystems on the planet, none more so than in southern Africa. This manuscript examines the potential impacts of climate change on the coastal fishes in southern Africa and provides some of the first information for the Southern Hemisphere, outside of Australasia. It begins by describing the coastal zone in terms of its physical characteristics, climate, fish biodiversity and fisheries. The region is divided into seven biogeographical zones based on previous descriptions and interpretations by the authors. A global review of the impacts of climate change on coastal zones is then applied to make qualitative predictions on the likely impacts of climate change on migratory, resident, estuarine-dependent and catadromous fishes in each of these biogeographical zones. In many respects the southern African region represents a microcosm of climate change variability and of coastal habitats. Based on the broad range of climate change impacts and life history styles of coastal fishes, the predicted impacts on fishes will be diverse. If anything, this review reveals our lack of fundamental knowledge in this field, in particular in southern Africa. Several research priorities, including the need for process-based fundamental research programs are highlighted

    Relationships between ground motion parameters and macroseismic intensity for Italy

    Get PDF
    AbstractThe relation between macroseismic intensity and ground shaking makes it possible to transform instrumental Ground Motion Parameters (GMPs) in macroseismic intensity and vice versa, and is therefore useful for making comparisons between estimates of seismic hazard determined in terms of GMPs and macroseismic intensity, and for other engineering and seismological applications. Empirical relationships between macroseismic intensity and different recorded GMPs for the Italian territory are presented in this paper. The coefficients are calibrated using a dataset of horizontal geometrical mean GMPs, i.e. peak ground acceleration, peak ground velocity, spectral acceleration at 0.2, 0.3, 1.0 and 2.0 s from the ITalian ACcelerometric Archive (ITACA; Luzi et al. in Italian Accelerometric Archive v3.0, Istituto Nazionale di Geofisica e Vulcanologia, Dipartimento della Protezione Civile Nazionale, 2019. 10.13127/itaca.3.0), and macroseismic intensity at Mercalli–Cancani–Sieberg (MCS) scale from the database DBMI15 (Locati et al. in Database Macrosismico Italiano (DBMI15), versione 2.0, Istituto Nazionale di Geofisica e Vulcanologia (INGV), 2019. 10.13127/DBMI/DBMI15.2). A dataset is obtained that corresponds to 240 pairs of macroseismic intensity-GMPs from 67 Italian earthquakes in the time window 1972–2016 with moment magnitude ranging from 4.2 to 6.8 and macroseismic intensity in the range [2, 10–11]. The final dataset correlates strong motion stations and macroseismic intensity observations generally within 2 km from each other, and each association is manually validated through an expert judgement. The adopted functional form is non-linear, predicting macroseismic intensity as a function of LogGMPs and vice versa by performing separate regressions. The set of empirical conversion relationships GMP–IMCS–GMP and the associated standard deviations are compared with previous models. In order to verify the proposed model, a map in terms of PGA is obtained, starting from the PSHA in terms of intensities (Gomez Capera et al. in Bull Seismol Soc Am 100(4):614–1631, 2010. 10.1785/0120090212) and then using the empirical relationship here proposed in PGA, and compared with the National Italian seismic hazard map (Stucchi et al. in Bull Seismol Soc Am 101(4):1885–1911, 2011. 10.1785/0120100130)

    The determination of earthquake location and magnitude from macroseismic data in Europe

    No full text
    This paper describes how the earthquake parameters of historical earthquakes have been determined in Europe from macroseismic data by means of the so-called \u201cBoxer\u201d method, in the frame of the European Commission 2009\u20132012 Project SHARE (Seismic Hazard Harmonization in Europe). The problems related to the assessment of magnitude are described with more detail; the methodological issues are developed with special reference to the \u201cstable continental region\u201d. The paper first describes how the coefficients of the Boxer method are determined in five tectonic regions of the European area from the relevant calibration data sets, and discusses the problems dealt with while performing this task. Then it describes how the results have been checked against data different from those used in the previous phase. Finally, the application of the new coefficients to nearly a thousand of European earthquakes before 1900 is described. Stressing that, for the first time in Europe, homogeneous results have been obtained at such a large scale, the final part of the paper is devoted to analyse such results, with special reference to the general trends and to some case-histories

    A new classification of earthquake-induced landslide event sizes based on seismotectonic, topographic, climatic and geologic factors

    Get PDF
    Background This paper reviews the classical and some particular factors contributing to earthquake-triggered landslide activity. This analysis should help predict more accurately landslide event sizes, both in terms of potential numbers and affected area. It also highlights that some occurrences, especially those very far from the hypocentre/activated fault, cannot be predicted by state-of-the-art methods. Particular attention will be paid to the effects of deep focal earthquakes in Central Asia and to other extremely distant landslide activations in other regions of the world (e.g. Saguenay earthquake 1988, Canada). Results The classification of seismically induced landslides and the related ‘event sizes’ is based on five main factors: ‘Intensity’, ‘Fault factor’, ‘Topographic energy’, ‘Climatic background conditions’, ‘Lithological factor’. Most of these data were extracted from papers, but topographic inputs were checked by analyzing the affected region in Google Earth. The combination and relative weight of the factors was tested through comparison with well documented events and complemented by our studies of earthquake-triggered landslides in Central Asia. The highest relative weight (6) was attributed to the ‘Fault factor’; the other factors all received a smaller relative weight (2–4). The high weight of the ‘Fault factor’ (based on the location in/outside the mountain range, the fault type and length) is strongly constrained by the importance of the Wenchuan earthquake that, for example, triggered far more landslides in 2008 than the Nepal earthquake in 2015: the main difference is that the fault activated by the Wenchuan earthquake created an extensive surface rupture within the Longmenshan Range marked by a very high topographic energy while the one activated by the Nepal earthquake ruptured the surface in the frontal part of the Himalayas where the slopes are less steep and high. Finally, the calibrated factor combination was applied to almost 100 other earthquake events for which some landslide information was available. This comparison revealed the ability of the classification to provide a reasonable estimate of the number of triggered landslides and of the size of the affected area. According to this prediction, the most severe earthquake-triggered landslide event of the last one hundred years would actually be the Wenchuan earthquake in 2008 followed by the 1950 Assam earthquake in India – considering that the dominating role of the Wenchuan earthquake data (including the availability of a complete landslide inventory) for the weighting of the factors strongly influences and may even bias this result. The strongest landslide impacts on human life in recent history were caused by the Haiyuan-Gansu earthquake in 1920 – ranked as third most severe event according to our classification: its size is due to a combination of high shaking intensity, an important ‘Fault factor’ and the extreme susceptibility of the regional loess cover to slope failure, while the surface morphology of the affected area is much smoother than the one affected by the Wenchuan 2008 or the Nepal 2015 earthquakes. Conclusions The main goal of the classification of earthquake-triggered landslide events is to help improve total seismic hazard assessment over short and longer terms. Considering the general performance of the classification-prediction, it can be seen that the prediction either fits or overestimates the known/observed number of triggered landslides for a series of earthquakes, while it often underestimates the size of the affected area. For several events (especially the older ones), the overestimation of the number of landslides can be partly explained by the incompleteness of the published catalogues. The underestimation of the extension of the area, however, is real – as some particularities cannot be taken into account by such a general approach: notably, we used the same seismic intensity attenuation for all events, while attenuation laws are dependent on regional tectonic and geological conditions. In this regard, it is likely that the far-distant triggering of landslides, e.g., by the 1988 Saguenay earthquake (and the related extreme extension of affected area) is due to a very low attenuation of seismic energy within the North American plate. Far-distant triggering of landslides in Central Asia can be explained by the susceptibility of slopes covered by thick soft soils to failure under the effect of low-frequency shaking induced by distant earthquakes, especially by the deep focal earthquakes in the Pamir – Hindukush seismic region. Such deep focal and high magnitude (> > 7) earthquakes are also found in Europe, first of all in the Vrancea region (Romania). For this area as well as for the South Tien Shan we computed possible landslide event sizes related to some future earthquake scenarios

    Sub-picosecond temporal resolution of anomalous Hall currents in GaAs

    Get PDF
    Abstract The anomalous Hall (AH) and spin Hall effects are important tools for the generation, control, and detection of spin and spin-polarized currents in solids and, thus, hold promises for future spintronic applications. Despite tremendous work on these effects, their ultrafast dynamic response is still not well explored. Here, we induce ultrafast AH currents in a magnetically-biased semiconductor by optical femtosecond excitation at room temperature. The currents’ dynamics are studied by detecting the simultaneously emitted THz radiation. We show that the temporal shape of the AH currents can be extracted by comparing its THz radiation to the THz radiation emitted from optically induced currents whose temporal shape is well known. We observe a complex temporal shape of the AH currents suggesting that different microscopic origins contribute to the current dynamics. This is further confirmed by photon energy dependent measurements revealing a current inversion at low optical excitation intensities. Our work is a first step towards full time resolution of AH and spin Hall currents and helps to better understand the underlying microscopic origins, being a prerequisite for ultrafast spintronic applications using such currents
    corecore