1,448 research outputs found
On the 'Strong-Coupling' Generalization of the Bogoliubov Model
A generalized Bogoliubov model of the Bose gas in the ground state is
proposed which properly takes into account both the long-range and short-range
spatial boson correlations. It concerns equilibrium characteristics and
operates with in-medium Schrodinger equations for the pair wave functions of
bosons being the eigenfunctions of the second-order reduced density matrix. The
approach developed provides reasonable results for a dilute Bose gas with
arbitrary strong interaction between particles (the 'strong-coupling' case) and
comes to the canonical Bogoliubov model in the weak-coupling regime.Comment: 6 pages, REVTEX, no figure
Resonant production of fermions in an axial background
We consider the resonant production of fermions from an oscillating axial
background. The classical evolution of the axial field is given by that of a
massive pseudovector field, as suggested by the renormalizability of the
theory. We look upon both the massive and the massless fermion production from
a perturbative point of view. We obtain the corresponding spectrum and angular
distributions for the different spins or helicities in the particular case of a
spatial-like axial field. We also extend our study to the non-perturbative
regime in the massless case and compare the results with the perturbative ones.Comment: 16 pages, LaTeX, 12 figures; new comments and references added,
version to appear in Phys. Rev.
Analysis of and with QCD sum rules
In this article, we calculate the masses and the pole residues of the
heavy baryons and with the QCD
sum rules. The numerical values (or
) and (or ) are in good agreement
with the experimental data.Comment: 18 pages, 18 figures, slight revisio
QCD Calculation of the Form Factors
We calculate the form factors for the heavy-to-light transitions
by means of QCD sum rules using and light-cone
wave functions. Higher twist contributions as well as gluonic corrections are
taken into account. The sensitivity to the shape of the leading-twist wave
functions and effects of SU(3)-breaking are discussed. The results are compared
with quark model predictions and with the results from QCD sum rules for
three-point correlators.Comment: 13 pages +5 figures available upon request , LaTeX , CERN-TH.6880/93,
MPI-Ph/93-32, LMU-07/9
The Constraint on FCNC Coupling of the Top Quark with a Gluon from ep Collisions
Using the constraint on the single top production cross-section obtained at
the HERA collider, , we evaluate an upper limit on
oupling constant of the anomalous top quark interaction with a gluon via
flavor-changing neutral current: ,
BRComment: Latex, 3 figures, missed references were adde
Ground state particle-particle correlations and double beta decay
A self-consistent formalism for the double beta decay of Fermi type is
provided. The particle-particle channel of the two-body interaction is
considered first in the mean field equations and then in the QRPA. The
resulting approach is called the QRPA with a self-consistent mean field
(QRPASMF). The mode provided by QRPASMF, does not collapse for any strength of
the particle-particle interaction. The transition amplitude for double beta
decay is almost insensitive to the variation of the particle-particle
interaction. Comparing it with the result of the standard pnQRPA, it is smaller
by a factor 6. The prediction for transition amplitude agrees quite well with
the exact result. The present approach is the only one which produces a strong
decrease of the amplitude and at the same time does not alter the stability of
the ground state.Comment: 23 pages, 7 figure
Charged Higgs Boson Production in Bottom-Gluon Fusion
We compute the complete next-to-leading order SUSY-QCD corrections for the
associated production of a charged Higgs boson with a top quark via
bottom-gluon fusion. We investigate the applicability of the bottom parton
description in detail. The higher order corrections can be split into real and
virtual corrections for a general two Higgs doublet model and into additional
massive supersymmetric loop contributions. We find that the perturbative
behavior is well under control. The supersymmetric contributions consist of the
universal bottom Yukawa coupling corrections and non-factorizable diagrams.
Over most of the relevant supersymmetric parameter space the Yukawa coupling
corrections are sizeable, while the remaining supersymmetric loop contributions
are negligible.Comment: 18 pages, v2: some discussions added, v3: published versio
Ambiguities in the partial-wave analysis of pseudoscalar-meson photoproduction
Ambiguities in pseudoscalar-meson photoproduction, arising from incomplete
experimental data, have analogs in pion-nucleon scattering. Amplitude
ambiguities have important implications for the problems of amplitude
extraction and resonance identification in partial-wave analysis. The effect of
these ambiguities on observables is described. We compare our results with
those found in earlier studies.Comment: 12 pages of text. No figure
Direct Instantons in QCD Nucleon Sum Rules
We study the role of direct (i.e. small-scale) instantons in QCD correlation
functions for the nucleon. They generate sizeable, nonperturbative corrections
to the conventional operator product expansion, which improve the quality of
both QCD nucleon sum rules and cure the long-standing stability problem, in
particular, of the chirally odd sum-rule.Comment: 10 pages, UMD PP#93-17
Associated charged Higgs and W boson production in the MSSM at the CERN Large Hadron Collider
We investigate the viability of observing charged Higgs bosons (H^+/-)
produced in association with W bosons at the CERN Large Hadron Collider, using
the leptonic decay H^+ -> tau^+ nu_tau and hadronic W-decay, within different
scenarios of the Minimal Supersymmetric Standard Model (MSSM) with both real
and complex parameters. Performing a parton level study we show how the
irreducible Standard Model background from W+2 jets can be controlled by
applying appropriate cuts and find that the size of a possible signal depends
on the cuts needed to suppress QCD backgrounds and misidentifications. In the
standard maximal mixing scenario of the MSSM we find a viable signal for large
tan(beta) and intermediate H^+/- masses (~m_t) when using optimistic cuts
whereas for more pessimistic ones we only find a viable signal for very large
tan(beta) (>~50). We have also investigated a special class of MSSM scenarios
with large mass-splittings among the heavy Higgs bosons where the cross-section
can be resonantly enhanced by factors up to one hundred, with a strong
dependence on the CP-violating phases. Even so we find that the signal after
cuts remains small except for small masses (~< m_t) with optimistic cuts.
Finally, in all the scenarios we have investigated we have only found small
CP-asymmetries.Comment: 28 pages, 12 figures, version to appear in Euro. Phys. J.
- …
