121 research outputs found

    Seasonal performance assessment of sanitary hot water production systems using propane and CO2 heat pumps

    Full text link
    [EN] This paper presents an experimental analysis and performance evaluation of a ground source heat pumpsystem providing heating/cooling to an office building, located at the Universitat Politècnica de Valènciain Spain. The experimental data and a detailed description of the analysis tool used were presented ina previous paper for the first six operational years. This paper provides the adaptation of such analysistool to the new configuration (heat pump with two compressors working in tandem), and provides anupdated complete reference data sets over more than eleven years which can be used by researchers formodel validation purposes.The work of M. Tammaro on electric heat pumps is supported by the Next Heat Pump Generation project (funded by the European Commission in the 7th Framework Programme, grant number 307169 - European Heat Pump Association, 2013), which is gratefully acknowledged.Tammaro, M.; Montagud, C.; Corberán, J.; Mauro, A.; Mastrullo, R. (2017). Seasonal performance assessment of sanitary hot water production systems using propane and CO2 heat pumps. International Journal of Refrigeration. 74:222-237. https://doi.org/10.1016/j.ijrefrig.2016.09.0262222377

    Thermodynamic Analysis of a Multi-Ejector, CO2, Air-To-Water Heat Pump System

    Get PDF
    Abstract Nowadays, air conditioning systems for residential and office buildings, contribute largely to the energy consumptions and to the direct and indirect emissions of greenhouse gases. Carbon dioxide (CO2) could be an interesting option to replace traditional HFCs in space heating applications, due to its environmentally friendly characteristics: zero ODP and extremely low GWP, but, in order to spread its use, improvements in performances are needed. In fact, CO2 requires transcritical cycles with high expansion losses. The use of an ejector can reduce these losses and improve the performances up to 30% (depending on the performances of the ejector itself and on the operating conditions). In the a/c applications, characterized by variable operating conditions, multi-ejector systems could be used, where some ejectors work in parallel, in different combination, varying the operating conditions. Currently, a project of DTE-PCU-SPCT Department of ENEA and Industrial Engineering Department of Federico II University of Naples, is in progress, in order to evaluate experimentally the effect of several ejectors geometries on the global performance of a CO2 heat pump working with a transcritical cycle. As a part of this project, a complete heat pump system for production of hot water for sanitary use and for space heating is tested to investigate the effect of the ejector size on the balancing of the global performance of the whole system

    A propane water-to-water heat pump booster for sanitary hot water production: Seasonal performance analysis of a new solution optimizing COP

    Full text link
    [EN] Electrical heat pumps for sanitary hot water production achieve a high performance with a good matching of water and refrigerant temperature profiles during the heat rejection stage, as it happens in CO2 systems. This work considers the thermodynamic possibility to adapt the condenser pressure of a propane heat pump to maximize the COP, while producing sanitary hot water up to 60 C from a heat sink equal to 15 or 25 C. The performance of the heat pump is calculated through specific models which, in combination with a TRNSYS model of the whole system, allowed to assess its seasonal performance for a hotel in Strasbourg, also varying the control logic and the size of the storage tank. Results obtained led to the conclusion that, for achieving a high seasonal performance, the control logic of the tank has the largest influence.Part of the results of this study were developed in the mainframe of the FP7 European project ‘Next Generation of Heat Pumps working with Natural fluids’ (NxtHPG). Part of the work presented was carried by M. Tammaro during his visit at the Instituto de Ingenierı´a Energetica, Universitat Politecnica de Val encia and by C. Montagud during her visit at the Department of Industrial Engineering, Federico II University of Naples, with the financial support of the POLIGRID project.Tammaro, M.; Montagud Montalvá, CI.; Corberán Salvador, JM.; Mauro, AW.; Mastrullo, R. (2015). A propane water-to-water heat pump booster for sanitary hot water production: Seasonal performance analysis of a new solution optimizing COP. International Journal of Refrigeration. 51:59-69. https://doi.org/10.1016/j.ijrefrig.2014.12.008S59695

    On velocity-dependent dark matter annihilations in dwarf satellites

    Get PDF
    Milky Way dwarf spheroidal satellites are a prime target for Dark Matter (DM) indirect searches. Recently the importance of possible long-range interactions has been recognized, as they can boost the expected DM gamma ray signal by orders of magnitude through an effect commonly known as the Sommerfeld enhancement. However, for such analyses precise modelling of DM phase-space distribution becomes crucial and can introduce large uncertainties in the final result. We provide a pioneering attempt towards a comprehensive investigation of these systematics. First, the DM halo profiles are constrained using Bayesian inference on the available stellar kinematic datasets with a careful treatment of observational and theoretical uncertainties. We consider both cuspy and cored parametric DM density profiles, together with the case of a non-parametric halo modelling directly connected to observable quantities along the line-of-sight. After reconsidering the study case of ergodic systems, the basic ingredient of all previous analyses, we investigate for the first time scenarios where DM particles are allowed to have anisotropic velocity distributions. Referring to a generalized J-factor, sensitive to velocity-dependent effects, an enhancement (suppression) with respect to the isotropic phase-space distributions is obtained for the case of tangentially (radially) biased DM particle orbits. We provide new estimates for J-factors for the eight brightest Milky Way dwarfs also in the limit of velocity-independent DM annihilation, in good agreement with previous results in literature, and derive data-driven lower-bounds based on the non-parametric modelling of the halo density. This work presents a state-of-the-art analysis of the aforementioned effects and falls within the interest of current and future experimental collaborations involved in DM indirect detection programs

    A critical reassessment of particle Dark Matter limits from dwarf satellites

    Get PDF
    Dwarf satellite galaxies are ideal laboratories for identifying particle Dark Matter signals. When setting limits on particle Dark Matter properties from null searches, it becomes however crucial the level at which the Dark Matter density profile within these systems is constrained by observations. In the limit in which the spherical Jeans equation is assumed to be valid for a given tracer stellar population, we study the solution of this equation having the Dark Matter mass profile as an output rather than as a trial parametric input. Within our new formulation, we address to what level dwarf spheroidal galaxies feature a reliable mass estimator. We assess then possible extrapolation of the density profiles in the inner regions and -- keeping explicit the dependence on the orbital anisotropy profile of the tracer population -- we derive general trends on the line-of-sight integral of the density profile squared, a quantity commonly dubbed J-factor and crucial to estimate fluxes from prompt Dark Matter pair annihilations. Taking Ursa Minor as a study case among Milky Way satellites, we perform Bayesian inference using the available kinematical data for this galaxy. Contrary to all previous studies, we avoid marginalization over quantities poorly constrained by observations or by theoretical arguments. We find minimal J-factors to be about 2 to 4 times smaller than commonly quoted estimates, approximately relaxing by the same amount the limit on Dark Matter pair annihilation cross section from gamma-ray surveys of Ursa Minor. At the same time, if one goes back to a fixed trial parametric form for the density, e.g. using a NFW or Burkert profile, we show that the minimal J can hardly be reduced by more than a factor of 1.5. \ua9 2016 IOP Publishing Ltd and Sissa Medialab srl

    Long-range Angular Correlations On The Near And Away Side In P-pb Collisions At √snn=5.02 Tev

    Get PDF
    7191/Mar294

    The 2009 december gamma-ray flare of 3C 454.3: The multifrequency campaign

    Get PDF
    During the month of 2009 December, the blazar 3C 454.3 became the brightest gamma-ray source in the sky, reaching a peak flux F 2000 × 10 -8 photons cm-2 s-1 for E > 100 MeV. Starting in 2009 November intensive multifrequency campaigns monitored the 3C 454 gamma-ray outburst. Here, we report on the results of a two-month campaign involving AGILE, INTEGRAL, Swift/XRT, Swift/BAT, and Rossi XTE for the high-energy observations and Swift/UVOT, KANATA, Goddard Robotic Telescope, and REM for the near-IR/optical/UV data. GASP/WEBT provided radio and additional optical data. We detected a long-term active emission phase lasting 1 month at all wavelengths: in the gamma-ray band, peak emission was reached on 2009 December 2-3. Remarkably, this gamma-ray super-flare was not accompanied by correspondingly intense emission in the optical/UV band that reached a level substantially lower than the previous observations in 2007-2008. The lack of strong simultaneous optical brightening during the super-flare and the determination of the broadband spectral evolution severely constrain the theoretical modeling. We find that the pre- and post-flare broadband behavior can be explained by a one-zone model involving synchrotron self-Compton plus external Compton emission from an accretion disk and a broad-line region. However, the spectra of the 2009 December 2-3 super-flare and of the secondary peak emission on 2009 December 9 cannot be satisfactorily modeled by a simple one-zone model. An additional particle component is most likely active during these states. © 2010. The American Astronomical Society. All rights reserved
    corecore