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Abstract. Milky Way dwarf spheroidal satellites are a prime target for Dark Matter (DM)
indirect searches. Recently the importance of possible long-range interactions has been recog-
nized, as they can boost the expected DM gamma ray signal by orders of magnitude through
an effect commonly known as the Sommerfeld enhancement. However, for such analyses
precise modelling of DM phase-space distribution becomes crucial and can introduce large
uncertainties in the final result. We provide a pioneering attempt towards a comprehensive
investigation of these systematics. First, the DM halo profiles are constrained using Bayesian
inference on the available stellar kinematic datasets with a careful treatment of observational
and theoretical uncertainties. We consider both cuspy and cored parametric DM density
profiles, together with the case of a non-parametric halo modelling directly connected to
observable quantities along the line-of-sight. After reconsidering the study case of ergodic
systems, the basic ingredient of all previous analyses, we investigate for the first time scenar-
ios where DM particles are allowed to have anisotropic velocity distributions. Referring to
a generalized J-factor, sensitive to velocity-dependent effects, an enhancement (suppression)
with respect to the isotropic phase-space distributions is obtained for the case of tangen-
tially (radially) biased DM particle orbits. We provide new estimates for J-factors for the
eight brightest Milky Way dwarfs also in the limit of velocity-independent DM annihilation,
in good agreement with previous results in literature, and derive data-driven lower-bounds
based on the non-parametric modelling of the halo density. This work presents a state-of-the-
art analysis of the aforementioned effects and falls within the interest of current and future
experimental collaborations involved in DM indirect detection programs.
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1 Introduction

Dwarf spheroidal (dSph) satellites in the Milky Way (MW) are a unique laboratory for the
investigation — and most importantly for possible detection — of signals from particle dark
matter (DM) [1, 2]. This follows form the fact that they have fairly large DM densities
and small amount of contaminants from standard astrophysical sources: some of the largest
known mass-to-light ratios [3, 4], typically M/L & O(102) M�/L�, are indeed found for this
class of objects; at the same time, MW dSphs show no sign of recent star formation activity
and negligible emissivities associated to their interstellar medium [5–7].

In case DM particles can annihilate in pairs, like e.g. Weakly Interacting Massive
Particles (WIMPs) [8], being a thermal relics from the early Universe, the prompt emission
of photons is one of the most important DM indirect detection signatures [9, 10]. In particular,
for masses at the GeV scale or above, promising signal-to-noise ratios are expected in the
gamma-ray band when observing MW dSphs [11–15], making it possible to derive relevant
constraints on the fundamental properties of the DM particle [16–20].

Considering a given object whose DM phase-space distribution function (PSDF) is
fDM(~x,~v) (the PSDF tracks the mass density per phase-space element at a given point in
space ~x), the gamma-ray flux due to pair annihilation of DM particles in a telescope pointing
at the object with angular acceptance ∆Ω would be:

dΦγ

dEγ
=

1

4π

(σvrel)

2m2
χ

dNγ

dEγ

∫
∆Ω

dΩ

∫
l.o.s.

d`

∫
d~v1fDM(~x,~v1)

∫
d~v2 fDM(~x,~v2)S(|~vrel|) , (1.1)

where we have assumed that the DM particle χ is its own antiparticle (otherwise an extra
factor of 1/2 is needed), as well as defined mχ to be its mass and dNγ/dEγ the energy
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spectrum of the photons produced per annihilation. In this formula we are paying attention
to cases in which the pair annihilation cross section (σvrel) has a non-trivial dependence on
the modulus of the relative velocity |~vrel| = |~v1 − ~v2|, with ~v1 and ~v2 being the velocities
of two annihilating particles; we have then factorized (σvrel) into the velocity independent
term (σvrel) times a dimensionless factor fully comprising its dependence on relative velocity,
(σvrel) = (σvrel) · S(|~vrel|). The gamma-ray flux is then obtained by folding S onto the two
velocity distributions and integrating over all contributions along the l.o.s. and within the
instrument’s angular acceptance; we isolate these last two steps introducing:

J ≡
∫

∆Ω
dΩ

∫
l.o.s.

d`

∫
d~v1fDM(~x,~v1)

∫
d~v2 fDM(~x,~v2)S(|~vrel|)

≡
∫

∆Ω
dΩ

∫
l.o.s.

d` ρ2
DM(~x) 〈S(vrel)〉(~x) , (1.2)

where this definition is in analogy to what is usually denoted in the literature as “J-factor”,
focussing on the standard lore with S-wave annihilation of non-relativistic particles, in which
(σvrel) is, to a good approximation, velocity independent (we have normalized S(|~vrel|) to 1
in such a case).

There are several scenarios in which a non-trivial S(|~vrel|) arises; e.g., there are mod-
els for which S-wave annihilations are forbidden or severely suppressed, and hence P-wave
processes become relevant, inducing a |~vrel|2 scaling. In this paper we focus on cases in
which non-perturbative effects due to long range interactions introduce an additional veloc-
ity dependence proportional to inverse powers of vrel; since DM particles in galactic halos are
non-relativistic, this leads to a large increase in the expected fluxes for indirect searches [21–
28]. The effect, commonly known as Sommerfeld enhancement, is especially important for
small objects, like dSphs, where DM particles are expected to have fairly small velocities. The
fact that accurate predictions for the gamma-ray flux induced by DM annihilations require a
careful study of the phase-space distribution fDM(~x,~v) — as apposed to results approximat-
ing it with velocity moments — was acknowledged only recently, see e.g. [29–31], with the
notable exception of the pioneering study in ref. [32].

Our paper is devoted to a detail study of the Sommerfeld enhancement effect in MW
dSphs. We address uncertainties related to possible choices of the DM phase-space distribu-
tion function, considering a few alternative scenarios, including cases with anisotropic DM
velocity distributions, which are analyzed for the first time in this context (see also the recent
analysis [33], which appeared during the peer review process of this work). Furthermore, the
PSDF models considered here are fully consistent with the corresponding DM density pro-
files to be fitted to dSph observational data; we discuss results for two different parametric
forms for the density profile, the NFW profile, which is singular towards the center of the
system, and the Burkert profile, which instead has a flat core, as well as check predictions
for a non-parametric profile obtained from an inversion of the Jeans equation for spherical
systems. A growing effort that has been dedicated in recent years to the characterization of
the DM content in these objects, see, e.g., [4, 34–36]; we apply here a specular techniques to
efficiently scan our large — up to seven dimensional — parameter spaces. Using Bayesian
inference we compute the standard, as well as Sommerfeld-enhanced, J-factors for all eight
so-called “classical” dSphs (that were already known before the first discoveries of ultra-faint
ones), for which the quality of kinematic data is adequate to provide fairly small statistical
errors. We demonstrate that the DM velocity distribution — about which we have virtually
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no information — induces significant uncertainties in models with velocity dependent DM
annihilation cross-section.

The paper is structured as follows: in section 2 we describe the theoretical background
and introduce the different DM PSDFs, which are considered in the current analysis. Sec-
tion 3 contains our main results, including the astrophysical J-factors in different regimes
of Sommerfeld enhancement, as obtained through Bayesian analysis of recent dSph data.
Finally, section 4 contains our conclusions.

2 Phase-space density functions: basics and beyond

In this section we present the basic theoretical elements of our study. We introduce the
definition of PSDF and other quantities that are relevant for the present analysis. In par-
ticular, we devote our attention to various prescriptions for reconstructing the phase-space
distribution of DM particles, allowing for standard isotropic as well as anisotropic models,
which were left unaddressed by previous works.

The PSDF may be regarded as one of the key concepts in the theoretical study of
galactic dynamics. Both DM particle and stellar ensembles can be indeed specified by their
distribution functions, fDM(t, ~x,~v) and f?(t, ~x,~v) respectively (to shorten the notation, below
we denote by qDM,? a given quantity q referring either to the DM or to the stellar component;
in all equations there is no mixing between the two cases). In the steady-state limit, their
0-th moment corresponds to the density profile:

ρDM,?(~x) =

∫
d3v fDM,?(~x,~v) , (2.1)

while first and second moments carry information about mean velocities and velocity disper-
sions in the system according to:

v̄iDM,?(~x) =
1

ρDM,?(~x)

∫
d3v vi fDM,?(~x,~v) ,

σ2
ij DM,?(~x) =

1

ρDM,?(~x)

∫
d3v vivj fDM,?(~x,~v)− v̄iDM,?(~x)v̄j DM,?(~x) , (2.2)

with i and j labelling the three components of the velocity. Note that eqs. (2.1)–(2.2) allow
us to undertake a statistical description of the evolution of both, DM particles and stars,
as collisionless relaxed systems. Starting from the appropriate Boltzmann equation for the
PSDF and properly combining its 0-th and first moments, we can derive the well-known
Jeans equations [37]. Taking the steady-state limit as a valid regime for the whole system,
the Jeans equations in spherical approximation collapse into a single differential equation:

dpr DM,?

dr
+

2βDM,?(r)

r
pr DM,?(r) = −ρDM,?(r)

dΦ

dr
. (2.3)

Here pr DM,? ≡ ρDM,? σ
2
rr DM,? correspond to the radial dynamical pressure of DM particles and

stars; Φ constitutes the total gravitational potential; βDM,? are the DM and stellar orbital
anisotropies:

βDM,?(r) = 1−
σ2
ϕϕDM,? + σ2

θθ DM,?

2σ2
rr DM,?

, (2.4)

measuring the departure from the isotropic regime, represented by βDM,? = 0, while in the
case of pure radial (circular) orbits they take the value of 1 (−∞).
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The spherical Jeans equation for the stellar component provides a connection between
the stellar tracers and the underlying gravitational potential, which in MW dSph satellites
can be safely assumed to be due to the DM component only. In section 3 we use it as a
tool to constrain the DM halo profiles. In particular we will consider two approaches, one in
which we assume a parametric functional form for ρDM(r) and fit the relative parameters to
the kinematic observables, and another where we directly use the measured stellar velocity
dispersion to “invert” eq. (2.3) and derive an explicit expression for the DM density pro-
file. Regarding the parametric profiles, we will consider two models commonly used in the
literature, the NFW profile [38], motivated by results of N-body simulations of hierarchical
clustering in ΛCDM cosmologies:

ρNFW =
ρs

(r/rs) (1 + r/rs)
2 , (2.5)

and the Burkert profile [39], namely a phenomenological model with an inner constant density
rather than the cuspy behavior predicted by pure cold DM simulations:

ρBUR =
ρs

(1 + r/rs) (1 + (r/rs)2)
. (2.6)

The details for the non-parametric model are given in refs. [40, 41]. In summary, the DM
density profile is fully specified in terms of two quantities that can be fitted to observational
data, namely the stellar surface density and the l.o.s. projected velocity dispersion (involving
essentially a l.o.s. projection onto the observational plane of ρ? and pr ?), plus another
quantity, the stellar anisotropy profile β?(r), that needs to be selected according to some prior
(or prejudice, since there is no observational handle and only weak theoretical guidance on this
quantity). Applying this approach in full generality to our current analysis is computationally
challenging. In this study we will limit ourself to the sample case of β?(r) → −∞, and the
approximation of constant l.o.s. projected velocity dispersion and cored stellar profile, as
supported by spectroscopic and photometric data for the classical dSphs; it was shown in
ref. [40] that this corresponds the lowest possible J-factor in the limit of velocity-independent
DM annihilation rates. Once the density profile has been successfully reconstructed, we then
proceed building self-consistent extrapolations regarding the PSDF.

2.1 Maxwell-Boltzmann velocity profile

Most analyses concerning Sommerfeld enhancement of indirect detection signals have as-
sumed velocity distributions which are of Maxwell-Boltzmann type, as partially motived by
the isothermal sphere model. The latter is defined by a constant velocity dispersion and
results in Maxwellian velocity distribution at all radii. While the assumption of constant
velocity dispersion is in general too crude for this kind of analysis and corresponds only to
the radial profile of a singular isothermal sphere, one can readjust it to a dynamical model
at hand by applying the spherical Jean’s equation for the DM component in the limit of
βDM(r) = 0, finding the radially-dependent velocity dispersion expressed by the formula:

σ2
DM(r) =

1

ρDM(r)

∫ ∞
r

dr′ρDM(r′)
dΦ

dr′
. (2.7)

One can then approximate the PSDF by:

fDM-MB(r, v) =
ρDM(r)

(2πσ2
DM(r))3/2

· exp
[
−v2/

(
2σ2

DM(r)
)]
, (2.8)

where v is the modulus of the (isotropic) velocity.
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2.2 PSDF from Eddington’s inversion formula

According to the Jeans theorem any steady state solution of the Boltzmann equation can
be parametrized in terms of integrals of motion. This is particularly simple for spherical
isotropic systems, in which the PSDF depends only on the particle’s energy. It is customary
to express this dependence in terms of the relative energy:

E ≡ Ψ(r)− v2

2
, (2.9)

where we have introduced the relative potential Ψ(r) ≡ Φb−Φ(r). Since Ψ(r) is a monotonic
function, one can treat ρDM as a function of Ψ and invert the expression in eq. (2.1) to find
the so-called Eddington’s inversion formula [37]:

fDM-E(E) =
1√
8π2

d

dE

∫ E
0

dΨ√
E −Ψ

dρDM

dΨ

=
1√
8π2

[∫ E
0

dΨ√
E −Ψ

d2ρDM

dΨ2
−
(

1√
E −Ψ

dρDM

dΨ

)∣∣∣∣
Ψ=0

]
. (2.10)

The choice of Φb must be such that for any E < 0 the PSDF vanishes. We consider the case
of density profiles that are truncated at a given maximum radius rb, imposing Ψ(rb) = 0 (see
appendix A.1 for details). PSDFs computed through Eddington’s inversion generally deviate
from the Maxwell-Boltzmann approximation, constructed according to eq. (2.8)–(2.7), with
the difference being most significant for cuspy DM density profiles.

2.3 Anisotropic PSDFs

Going beyond the standard lore, we also consider spherical models which do not rely on the
assumption of isotropic DM velocity distribution. In fact, similar approaches to Eddington’s
inversion allow to reconstruct DM phase-space distribution with non-vanishing anisotropy
profiles [37].

For spherically symmetric systems, Jean’s theorem implies that the PSDFs can be
parametrized in terms of two integrals of motion, namely the relative energy E and the
magnitude of angular momentum L, i.e. fDM = fDM(E , L). The DM particles in such distri-
butions follow orbits that can be either radially or tangentially biased, depending on the sign
of βDM(r). Since the latter can not be inferred from observations, we have very limited infor-
mation regarding this quantity. N -body simulations within the ΛCDM paradigm find only
mild departure from the isotropic limit [42–47]; there is also the cusp slope-central anisotropy
theorem, which states that at the center of a system 2βDM ≥ − d ln ρ/d ln r [48]. In the fol-
lowing, we are going to study radially biased orbits by adopting the so-called Osipkov-Meritt
model [49, 50]. This choice corresponds to a central part of the halo that is isotropic, while
the DM particle orbits become increasingly radial in the outskirt:

βDM(r) =
r2

r2 + r2
a

, (2.11)

where ra is the anisotropy scale radius. Even in this case the PSDF still depend on a single
quantity, namely the variable Q ≡ E − L2/(2r2

a) and consequently eq. (2.1) can be inverted
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analogously to the Eddington’s case [49, 50]:

fDM-OM(Q) =
1√
8π2

d

dQ

∫ Q

0

dΨ√
Q−Ψ

dρDM-Q

dΨ

=
1√
8π2

[∫ Q

0

dΨ√
Q−Ψ

d2ρDM-Q

dΨ2
−
(

1√
Q−Ψ

dρDM-Q

dΨ

)∣∣∣∣
Ψ=0

]
, (2.12)

where one needs to rescale the density as ρDM-Q(r) ≡ ρDM(r) · (1 + r2/r2
a).

Finally, in this study we also consider the case of DM particles following circularly
biased orbits. Here the central anisotropy theorem is automatically fulfilled for all considered
density profiles and one can adopt the simplifying assumption of constant velocity anisotropy
βDM(r) = βc. The simplest choice for such a setup is the one, in which the PSDF is factorized
as [37]:

fDM−βc(E , L) =

(
L

L0

)−2βc

· gβc(E , L0) (2.13)

The procedure to invert eq. (2.1) is again similar to the one of Eddington’s formula. It
becomes particularly simple for βc = −1/2 when gβc takes the following form:

g−1/2(Ψ, L0) =
L0

2π2

d2

dΨ2

(
ρDM

r

)
. (2.14)

Analytic solutions can be also derived for other half-integer values of βc, but the inversion
could even be performed for any arbitrary constant value using Abel integral transform. We
however focus only on the case of βc = −1/2, since it is sufficient for exploring the trend
of Sommerfeld-enhanced annihilations in systems with circularly biased orbits. We indeed
find significant J-factor boosts compared to the isotropic case already by considering such
moderate values of orbital anisotropy.1

2.4 Comparing the velocity distributions

The four PSDF models listed above are all based on a given DM density profile and its
corresponding gravitational potential, therefore one should obviously recover the same initial
ρDM(r) after applying eq. (2.1). However, the differences among them can be appreciated by
looking at the corresponding velocity probability distributions:

P(v; r) =
v2

ρDM(r)

∫
dΩvfDM(r,~v) , (2.15)

where dΩv denotes the integral over the direction of the velocity vector ~v (of course, such
integral reduces to a factor of 4π for isotropic PSDFs). In figure 1 we show P(v; r) for
the four PSDFs under assumption of the two parametric density profiles — a NFW on the
left panel and a Burkert profile on the right — at a fixed ratio of r/rs = 0.3, chosen as
representative radius since in both cases a significant contribution towards the total J-factor
originates around this portion of the density profile, as discussed in section 3.2. We can
see that the standard isotropic modelling, using Eddington’s inversion formula or Maxwell-
Boltzmann approximation, yields similar P(v; r), with the MB approach typically predicting

1We explicitly checked that by going to lower values of βc one finds even larger enhancement.
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Eddington
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βDM = − 1/2

Figure 1. Velocity probability distribution for various PSDF models. The left (right) plot corresponds
to a NFW (Burkert) DM density profile; in both cases results are shown for r/rs = 0.3, with rs being
the scale radius. The velocities are normalized to the escape velocity vesc.

slightly warmer particles, which however becomes increasingly significant with decreasing
r/rs. On the other hand, anisotropic PSDFs have distinct velocity distributions and exhibit
consistent trends in comparison with the isotropic case for both ρDM(r) considered. Osipkov-
Merritt model yields velocity distributions with more power at high velocities2, which can
be heuristically understood by the fact that particles on radial orbits reach their terminal
velocities at the center of halo. On the contrary, for βDM(r) = −1/2, where the orbits are
circularly biased, one finds significantly colder central velocity distribution. This can be
explained by noting that the circular velocity scales as vcirc ∝ r(3−γ)/2, given a density profile
with the central slope γ (i.e. ρDM(r) ∝ r−γ for r � rs).

The trends sketched here for single particle velocity distributions are to some extent
representative also of the scalings with the relative velocity in particle pairs, which is the
relevant quantity when addressing J-factors in presence of velocity dependent annihilation
cross-sections. In the following section we apply our analysis to observational data of dSphs
and examine the implications of various phase-space distribution models.

3 Probing DM phase-space distribution in the classical dSphs

Here we illustrate the main results of the paper. First, we report the details on the statistical
analysis carried out on the available kinematic dataset of MW classicals in order to constrain
the DM halo density profile in dSphs. Note that the first part of the this section refers explic-
itly to parametric profiles. In the second part we compute the J-factor for the MW classical
dwarfs in the presence of velocity-dependent effects such as Sommerfeld enhancement. The

2The secondary peak close to vesc arises in connection to the radial truncation of the profile. There are a
few possibilities on how to introduce it, see appendix A.1 for details. The sharp peak in the plots appears
when a smoothing function is introduced, while it would be less pronounced for a sharp cut-off. Due to the
nature of Sommerfeld enhancement this truncation artifact at high velocities has however no sizable impact
on our results.
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results for non-parametric profiles will be also given in the end for comparison. We highlight
the role of the DM velocity distribution assumption, quantifying the differences among the
several cases considered, and show in particular the impact of anisotropic DM PSDFs against
the more commonly adopted isotropic phase-space distributions, according to the modeling
in eq. (2.12)–(2.14) involving βDM 6= 0.

3.1 Bayesian inference from dSph stellar kinematics

The small inferred ellipticities and the lack of evidence in favor of tidal disruption in the
eight classical dSphs give reasonable support to our assumptions of spherical symmetry and
dynamical equilibrium. Within such framework we can apply the standard spherical Jeans
analysis, see e.g. [12, 14, 15]. We start by solving eq. (2.3) for the stellar component of these
systems, for which pr ?(r) can be generally written as:

pr ?(r) = GN

∫ ∞
r

dx
ρ?(x)Mtot(x)

x2
exp

[
2

∫ x

r
dy

β?(y)

y

]
, (3.1)

where GN is the gravitational constant; the total mass profile of the system can be approx-
imated to the one of the DM component only, Mtot ' MDM, given the large mass-to-light
ratio exhibited by these objects. To make contact with data, eq. (3.1) is projected along the
l.o.s.according to:

σ2
los(R) =

1

Σ?(R)

∫ ∞
R2

dr2

√
r2 −R2

(
1− β?(r)

R2

r2

)
pr ?(r) , (3.2)

where we have introduced the surface brightness profile of the system, Σ?(R). Note that
the stellar density can be traced via an Abel transform of the surface brightness under the
approximation of a constant luminosity profile for the stars in the galaxy. Once eq. (3.1)
is plugged into eq. (3.2), such normalization drops out. For an adequate description of
the surface brightness profile of the classical dwarfs, we rely on the Plummer model [51, 52],
characterized by the projected half-light radius R1/2, which provides good fits to the available
photometric dataset for these objects [53]:

Σ?(R) ∝
(
1 + (R/R1/2)2

)−2 ⇔ ρ?(r) ∝ 3/(4R1/2)
(
1 + (R/R1/2)2

)−5/2
. (3.3)

Notably, in the present study we include the two independent sources of uncertainty lying
in the observational determination of R1/2 (which is to a very good approximation given by
R1/2 ' α1/2D), namely the error from determination of the heliocentric distance of the object,
D, and the one from analysis of the photometric data when determining the angular half-light
distance, α1/2. We adopt here for the eight classical MW satellites nominal values D, α1/2

and corresponding estimated errors ∆D, ∆α1/2 reported in the compilation of ref. [54].
In order to predict l.o.s. velocity dispersion profiles, eq. (3.1)–(3.2) require the modeling

of the stellar orbital anisotropy and the DM halo mass of the galaxy. In an attempt to derive
conservative bounds on DM halo parameters, we avoid the use of over-simplified stellar
anisotropy profiles, e.g. a spatially constant parameter [12, 14, 55]. In light of the poor
indications concerning β?(r) in dSphs, both from the side of N-body simulations [56, 57] and
present observations [58], we rather advocate a 3-parameter fiducial model of the form:

β?(r) =
β0 + β∞(r/rβ)2

1 + (r/rβ)2
, (3.4)
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i.e. the Baes-Van Hese proposal [59], characterized by a transition from an inner regime
governed by β0 to an outer one set by β∞, with characteristic scale rβ and slope ηβ = 2,
which we for simplicity keep constant throughout our analysis.

The adopted combination of stellar Plummer model, stellar velocity dispersion anisotropy
in eq. (3.4), and the cuspy/cored DM halo profile defined in eq. (2.5)–(2.6), fully characterizes
our study of dSph galactic dynamics with the spherical Jeans equation. The test-statistic we
define in order to perform our analysis on the measured stellar kinematics in MW satellites
reads as follows:

Lkin ≡
N∏
k=1

1√
2π∆σlos (k)

(
α(k)

) exp

−1

2

(
σlos (k) − σlos

(
α(k)

)
∆σlos (k)

(
α(k)

) )2
 . (3.5)

The above likelihood is suitable for a binned data analysis of dSph kinematics, see for in-
stance [15]. For each bin k ≤ N , with angular annulus α(k) ' R(k)/D, we can compare
theory predictions, σlos

(
α(k)

)
, against spectroscopic measurements, denoted here by σlos (k);

in doing so, we also take into account the observational uncertainty on the dataset binning,
namely:

∆σlos (k)

(
α(k)

)
≡
√(

δσlos (k)

)2
+

1

4

[
σlos

(
α(k) + ∆α(k)

)
− σlos

(
α(k) −∆α(k)

)]2
, (3.6)

where δσlos (k) corresponds to the observational error stemming from the spectroscopic mea-
surement of the l.o.s. velocity dispersion, while ∆α(k) stands for the angular distance un-
certainty associated with the k-th bin. Equipped with eq. (3.5), we proceed performing a
Markov Chain Monte Carlo (MCMC) analysis exploiting the stellar kinematic dataset pre-
sented in [14].3 Our fitting procedure is carried out along the lines of Bayes’ theorem:

P
(
~θ | data

)
∝ P0

(
~θ
)
Ltot

(
data | ~θ

)
, (3.7)

where the posterior probability density function (p.d.f.) is sampled from the product of the
prior probability distribution assigned to the set of model parameters ~θ, with the likelihood
function reported in eq. (3.5), up to the overall normalization defining the so-called evidence
of the model (independent on ~θ ). The general model under scrutiny by means of Bayesian
inference is defined by seven parameters:

~θ = {ρs, rs, rβ, β0, β∞, α1/2, D} ; (3.8)

we explore the model parameter space restricting to the following set of ranges:

−5 ≤ ρ̃s ≡ log10

(
ρs/[GeV cm−3]

)
≤ 5 ,

−5 ≤ r̃s ≡ log10 (rs/[kpc]) ≤ 2 ,

−3 ≤ r̃β ≡ log10 (rβ/[kpc]) ≤ 1 , (3.9)

1 ≤ b0 ≡ 2β0/(β0−1) ≤ 1.95 ,

0 ≤ b∞ ≡ 2β∞/(β∞−1) ≤ 1.95 .

3We are deeply grateful to M.G. Walker, who has provided us stellar l.o.s. velocity dispersions for the
classical MW satellites in bins of angular annuli. We wish to refer to [4, 14] and more specifically to [60–63]
for the details on the compilation of the spectroscopic measurements characterizing the dataset analyzed in
this work.
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We assign flat prior distributions on the set {ρ̃s, r̃s, r̃β, b0, b∞} according to the intervals
reported in eq. (3.9), while for the heliocentric distance D and the half-light angle α1/2,
we assume Gaussian prior with mean and standard deviation matching the corresponding
observational information available, i.e. D ±∆D and α1/2 ±∆α1/2 respectively.

In light of the well-known mass-anisotropy degeneracy plaguing the spherical Jeans
analysis [6, 7, 64, 65], some comments on the ranges appearing in eq. (3.9) are in order. First,
we wish to note that the adopted prior on r̃s involves a quite conservative upper-bound in
relation to the expected size of a MW dSph halo — reasonably well within O(102) kpc —
while, for what concerns the lower-bound, smaller radii than that would probe extremely
small scales, lower than O(10−2) pc. We remain quite agnostic also on the normalization of
the DM halo, assigning a range to ρ̃s that covers ten dex in ρs. For what regards the orbital
anisotropy parameters, we use the fact that by definition β?(r) ≤ 1 and the result of the
central-cusp anisotropy theorem [48], restricting β0,∞ to vary in the allowed physical range.
We further exploit the combination represented by b0,∞ introduced in eq. (3.9) in order to
equally weight tangential-like and radial-like stellar motion, however delimit the description
of tangential orbits to values β? 0,∞ & −25 due to numerical limitations. Finally, we find
it reasonable to restrict rβ to the range essentially probed by the stellar kinematic dataset,
namely O(1) pc–O(10) kpc.

To perform our MCMC analysis, we make usage of the emcee package [66], which
implements the affine invariant algorithm of ref. [67] as the basic tool to build up the proposal
distribution for the random walk of the chains. For each of the eight considered galaxies we
let 500 walkers evolve for 2000 steps, starting from a neighborhood of the best-fit point in
the seven dimensional parameter space, collecting a total of 106 samples. We remove the
first half of them to account for the burn-in period and further check the auto-correlation
length of the parameters in order to assess convergence in favor of independent draws from
the posterior. As a final validation of our numerical analysis, we test the possible appearance
of multi-modal solutions, which are difficult to sample within an ordinary MCMC sampling
algorithm. In order to do that, we repeat the full analysis of the eight objects by applying the
default nested sampling method available with the pymultinest library [68], which implements
the importance sampling algorithm proposed in ref. [69]. We used 1000 live points subjected
to the same prior distributions as discussed above and adopted the default tolerance of 0.5
for the estimated remaining evidence as a stopping criterion. For all the NFW and Burkert
fits we found a remarkable agreement between the affine-invariant ensemble MCMC and the
important nested sampling analyses, resulting in nearly identical posterior distributions.

In figure 2 we show the outcome of our Bayesian fit on Sculptor and Draco datasets,
describing the underlying DM halo with the NFW (red triangle plot) or with the Burkert (blue
triangle plot) profile. We report the one-dimensional marginalized posterior p.d.f. for each
of the estimated parameters, highlighting the 16-th, 50-th, 84-th percentiles, and their joint
probability distribution with the 68% and 95% highest probability density (h.p.d.) contours.
While a strong correlation between the DM halo parameters emerges in all our fits, we can
observe for the case of Draco and Carina that the NFW scenario is sensitive to the physically
motivated upper-limit assigned on rs. As a general trend, we find in NFW fits a non-negligible
correlation among DM halo parameters and β0,∞, while for the fits with Burkert profile the
correlation of the halo parameters with inner trend of the stellar anisotropy gets essentially
milder. Heliocentric distance and half-light angle show overall mild correlations in the bi-
dimensional joint distributions with the rest of the fitted parameters. Finally, to provide a
concrete picture of the goodness of our fits, we show in figure 3 the 68% and 95% h.p.d.
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Figure 2. MCMC output of the estimated parameters from NFW and Burkert fits, respectively red
and blue triangle plots, for Draco (upper panel) and Sculptor (lower panel). For each parameter,
we report with dashed lines the 16-th, 50-th, 84-th percentile on the histogram of the marginalized
posterior distribution. Correlations among the seven model parameters are also shown with the
corresponding 68% and 95% highest probability regions. The parameter labels are defined as follows:
ρ̃s = log10(ρs/GeVcm−3), r̃x = log10(rx/kpc) and bx = 2βx/(βx−1), while α1/2 and D are in units of
arcmin and kpc respectively.
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Figure 3. Predicted l.o.s. velocity dispersion profile and related kinematic data for Draco (upper
panels) and Sculptor (lower panels) in terms of the angular distance from the center of the dSph
galaxy. In dark (light) color we show respectively the 68% (95%) highest density probability region
obtained assuming a NFW (left panels) or a Burkert (right panels) halo profile when fitting the
spectroscopic measurements.

interval for the predicted l.o.s. velocity dispersion profile in Draco and Sculptor, together
with their binned data points. As has been noted by previous authors [11, 12, 15], both
cuspy and cored profiles can provide an optimal description of the present stellar kinematics
in MW classical dwarfs, if one allows for a flexible enough stellar anisotropy profile.

3.2 J-factor estimates from PSDFs

The main motivation of our paper is to accurately predict the expected prompt gamma-ray
emission from DM annihilations in a general setting, where the relevant cross-section can be
velocity dependent. As already motivated in the introduction, the net effect can be nicely

– 12 –



encaptured in a velocity-averaged enhancement factor, namely:

〈S(vrel)〉(r) =
1

ρ2
DM(r)

∫
d~v1fDM(r,~v1)

∫
d~v2 fDM(r,~v2)S(|~vrel|) . (3.10)

which reduces to 1 in case of velocity-independent annihilations. The reference case we have
in mind is connected to the Sommerfeld effect [70], which has been addressed by numerous
studies in context of DM phenomenology, see e.g. [29–31]. In this perspective, the key feature
is the strong enhancement of the annihilation cross-section for highly non-relativistic (slow)
particles that are charged under a force with light or massless mediator. The enhancement
effect is quantum in its nature and stems from the distortion of the wave-function of the
incoming particle states due to the exchange of a mediator sufficiently light to establish
a regime of long-range interactions [21, 22]. Sommerfeld-enhanced cross-sections for DM
particle χ annihilating through the mediator φ, with mχ � mφ, can be computed by solving
a non-relativistic Schrödinger equation with a potential related to long-range forces or by
resummation of ladder φ-exchanges in the diagrammatic field theory approach [71]. Results
are usually encapsulated as the ratio of wave functions in presence and absence of the long-
raged force, i.e. S = |χ(0)/χ(∞)|2. While in general there is no analytical solution for the
Yukawa potential, it can be very well approximated by Hulten’s potential [25, 72], for which
one finds:

S(vrel; ξ) =
παχ
vrel

sinh
(

12vrel
παχξ

)
cosh

(
12vrel
παχξ

)
− cos

(
2π

√
6
π2ξ
−
(

6vrel
π2αχξ

)2
) , (3.11)

where ξ ≡ mφ/ (αχmχ), with the long-range force strength dictated by the coupling constant
αχ. The above expression provides an enhancement of the DM annihilation rate that becomes
negligible in the limit of large vrel, or when mφ & mχ, which implies S(vrel; ξ � 1)→ 1. For
small vrel there are two additional limiting behaviors. In case of vanishing mediator mass,
which is often referred to as the Coulomb regime, one finds:

S(vrel; ξ � 1) ≈ παχ
vrel

. (3.12)

The third limiting behavior occurs at resonant values of ξres, where the enhancement becomes
even stronger for low relative velocities. Form eq. (3.11) one finds the following:

S

(
vrel ; ξres =

6

π2n2

)
≈

α2
χ

v2
reln

2
for each n ∈ N. (3.13)

In correspondence to these three regimes we will use a subscript notation for the J-factors,
where Jα−X denotes its value in the S ∝ v−αrel regime for phase-space model abbreviated by X
(E for Eddington’s inversion, MB for Maxwell-Boltzmann approximation, OM for Osipkov-
Merritt model and βc for the βDM(r) = −1/2 case). At this point we also specify that all
of our results were computed for αχ = 1/100 and aperture of α = 0.5◦ in the instrument
acceptance cone ∆Ω, unless stated otherwise.

Figure 4 shows the dependence of J-factors on the combination of particle physics
parameters ξ. The two panels refer again to the case of Draco (left panel) and Sculptor
(right panel), while the three bands displayed are all computed under the assumption of
isotropic velocities for PSDF given by Eddington’s inversion formula: they correspond to the
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Figure 4. J-factor dependence on the parameter ξ ≡ mφ/ (αχmχ); the bands displayed correspond to
the 68% highest density probability region obtained assuming a NFW, a Burkert or a non-parametric
halo profile in case of Draco (left panel) and Sculptor (right panel).

68% h.p.d. interval, derived from the above statistical analysis for the NFW and Burkert
parametric profiles and by consistently propagating the errors on R1/2, D and averaged σlos

for the non-parametric profile, which was obtained via Jean’s inversion procedure under
assumption of flat stellar l.o.s. velocity dispersion and in the limit of circular stellar orbits,
β? → −∞. Each of the three bands in the plots shows the three limiting regimes of the
Sommerfeld effect: for large values of ξ the standard, non-enhanced, values of J-factors are
recovered. By decreasing ξ one first encounters the resonance peaks, at which extremely
large boost can be obtained, up to factors of O(105), with the peak at the largest ξ (the
one corresponding to n = 1 in eq. (3.13)) providing the largest enhancement. By going to
even lower values of ξ one enters the Coulomb limit, where the enhancement saturates at
factors of O(103); while the corresponding boost is notably smaller then on the resonances,
this regime requires less fine-tuning on particle physics parameters. In same plot the three
bands clearly exhibit slight differences that arise among the considered density profiles. For
both, Draco and Sculptor, we see larger net enhancement for cuspy density profiles (i.e. the
NFW and our sample non-parametric case), since they typically imply deeper potential wells
and therefore these halos host colder particle populations at their centers. At the same time,
the effect one finds for a given dwarf cannot be rigidly applied to another object, since details
of the enhancement depend on the preferred region in the parameter space. In general the
larger the halo concentration, the larger the flux increase: e.g., in Draco we found that the
fit in case of the NFW profile points to significantly larger rs and lower ρs than for Sculptor,
see figure 2, while for the Burkert profile the preferred regions in parameter space are closer
one to the other; correspondingly we find a smaller relative boost in the NFW versus Burkert
comparison for Draco, while it is appreciably larger for Sculptor.

As we wish to illustrate now, the choice of phase-space modelling has also a signifi-
cant impact on the extrapolated enhancements, both when considering an approximation
to the isotropic case, such as for the MB model introduced above, and even more drasti-
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Figure 5. Rescaling of the velocity dependent factor 〈S(vrel)〉 in case of a given PSDF with respect to
the result obtained assuming Eddington’s inversion formula, as a function of the radial distance r from
the center of the halo (thick coloured curves). To illustrate where such rescalings are relevant, we also
show the normalized integrands in the formula for the J-factor, assuming the Eddington’s model and
the Coulomb regime for the Sommerfeld-enhancement, when the J-factor for an instrument pointing
towards the center of a spherical object is rewritten in terms of an integral over r; three different
instrument angular apertures α are considered, having fixed the ratio of the object distance D to the
scale length rs to 100 (thin black lines). The upper (lower) panel assumes a NFW (Burkert) density
profile for the DM halo.
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cally when one allows for anisotropic velocity distributions. In figure 5 we consider the ratio
〈S(vrel)〉(r)/〈S(vrel)〉E(r), comparing the velocity averaged enhancement of a given PSDF
to the Eddington’s case at the radial distance r from the center of halo. The angular and
line-of-sight integrals appearing in the definition of J-factor, see eq. (1.2), when pointing
towards the center of a spherical object, can be reduced to an integral on r, while performing
the other integrals analytically, see [40]. After rewriting J as J =

∫ rb
0 dr dJ/dr(r), where rb

is the outer truncation radius, the appropriately normalized ratio dJ/dr over J — assum-
ing the Eddington’s PSDF and the Coulomb regime for the Sommerfeld-enhancement — is
plotted in figure 5 with thin black lines (with corresponding vertical axis scale at the r.h.s.
of the plots; note that this scale is logarithmic). The three lines in each plot are for three
different apertures α of the instrument acceptance cone ∆Ω. The curves for the NFW profile
peak all at r = 0, while for the Burkert profile the largest contribution to J shifts towards
r ≈ rs; analogous trends — but sharper — would appear also in the resonant regime of the
Sommerfeld enhancement. This check provides a visual guidance to the plots, indicating the
intervals in r over which there is a significant impact on the expected annihilation flux, would
a different DM velocity distribution provide a significantly different 〈S(vrel)〉(r). In figure 5
thick lines show this quantity as computed for the MB, OM, βc PSDF over the result for
the Eddington’s case (now the reference vertical scale is on the l.h.s. of the plots). From
the plot one can see that, for the NFW profile, the Maxwell-Boltzmann approximation gives
a systematic (but numerical-friendly) underestimate of the true result in the isotropic case,
since the corresponding curve is smaller than 1 at the peak of the contribution to J1 (and
even more so for J2), while it gets marginally above 1 in the radial range less relevant for the
J-factor; the MB approximation causes instead a much smaller error for the Burkert profile.
In the same way one sees that even the very small bias on circular velocity introduced by
the model with βDM(r) = −1/2, impacting on the abundance of slow particles at the center
of the systems, is going to significantly boost J1,2−βc for both density profiles. Finally, for
what regards Osipkov-Merritt model, J1,2 tend to be smaller then in the isotropic case, which
however becomes significant only when the suppression in 〈S(vrel)〉(r), which is maximized at
r slightly below ra, gets within the radial range relevant for the computation of J1,2, namely
if we consider ra close to rs for Burkert and ra . rs for NFW profile.

With the general trends delineated in figure 5 , we can now quantify the Sommerfeld
effect for Milky Way classical dSphs. From the samples obtained in the MCMC analysis
described in section 3.1, we can actually compute the J-factor posterior distributions. Note
that evaluation requires the non-trivial computational task of performing multidimensional
integration for each of the MCMC events collected. In order to make the demanding numerics
feasible, we can resort to the scaling relations explained in greater detail in appendix B. In
figure 6 we show the J-factor p.d.f. for our benchmark galaxies, Draco and Sculptor. The
foreseen trend from figure 5 is nicely met in our findings for J-factors, applied to dSph
kinematic data. We see significant shifts in the peak of the distributions for the βc model,
and for the MB model with NFW profile, as well as the for OM model in the Burkert case.
We also note that the width of distributions depends on the PSDF under consideration, most
clearly visible by the increased spread for MB approximation in NFW case and for OM model
in the Burkert case. On the contrary, βc model yields slightly narrower distributions as the
enhancement effect is simply dominated by the center of halo resulting in lesser dependence
on the structural parameters.

Most importantly, we provide a summary of all our results in figure 7. We display
the J-factors for the eight classical dSphs in the non-enhanced (left panel), as well as the

– 16 –



Figure 6. Posterior distributions of J-factors in the three regimes of enhancement. The upper and
lower figures are respectively representing the study cases of Draco and Sculptor under the assumption
of NFW (left) and Burket (right) DM density profiles. The histograms with colored 68% and 95%
highest density probability regions were obtained using Eddington’s inversion. Also, we report with
gray lines the posterior related to the Maxwell-Boltzmann scenario, while with dark (purple for NFW
and dark blue for Burkert) colored lines the Osipkov-Merritt model, while we show with light colored
lines (pink for NFW and cyan for Burkert) the case of βDM = − 1

2 modelling.

enhanced regimes (right panel). We report in the figure 68% h.p.d. interval extracted from
the marginalized posterior distribution. Numerical values displayed in this figure, as well as
95% h.p.d., are reported in table 1. In the left panel of figure 7, we also compare our results
in the non-enhanced regime to some recent results in the literature; the good agreement
with these — despite the several sources of differences concerning the parametrization of

– 17 –



the stellar surface brightness profile, of the stellar anisotropy profile and the choice DM
parametric profile, together with the prior adopted in the corresponding MCMC studies —
comes as further validation of our code, as well as gives a feeling of the impact of other
uncertainties in this approach. The results obtained for the non-parametric profile under the
assumption of circular orbits for stars are reported in the plot as 68% lower limits, since it
was shown in [40] that this case can be used to extrapolate conservative lower limit on (non-
enhanced) J-factors. From the right panel of figure 7 we can read off the following trends:
for NFW fits the difference between isotropic and OM model tends to be small, especially
for objects that prefer large rs (in particular, Draco and Carina), which we also adopt as
the characteristic scale for the velocity anisotropy, i.e. ra = rs. On the other hand, for the
Burkert profile we find stronger dependence on the PSDF anisotropy, which stands out in
the same fashion for all the eight objects. In this respect, the prime targets for detection
among the eight classical dSphs remain essentially the same as in the non-enhanced case, with
slight improvement for Sculptor and Sextans, which we find to have more concentrated DM
halos.4 The effect of phase-space modelling turns out to be significant as it is comparable to,
or in some cases even exceeds, other uncertainties in the spherical Jeans equation approach
and can be summarized as follows: when considering the Sommerfeld enhancement regimes,
the OM model may indeed induce up to ∼ 30% decrease in results compared to estimates
with Eddington’s inversion formula, while βDM = −1/2 up to 50% increase. Restraining to
the MB approximation implies in general an underestimate of the flux in case of singular or
very concentrated profiles. Finally regarding the non-parametric approach of ref. [40], 68%
h.p.d. are shown in the right panel of figure 7, considering the case of Eddington’s inversion
only. Note that these do not correspond anymore to the most conservative cases for the
extrapolated J1 and J2, as due to the fact that this profile is still singular towards the center
and therefore receives a prominent gain in the expected flux from the Sommerfeld effect. A
more general analyses would be needed to find the new conservative lower limits in the two
enhanced regimes; this is technically and numerically very challenging and beyond the scope
of this work. Another flaw of this density profile is the fact that we cannot actually exploit
the OM model to treat radially anisotropic DM configurations, since one finds positive-
definite PSDF only for ra/rs & 10, being essentially equivalent to the Eddington’s case.
For this reasons we mostly find the lowest J-factors in the enhanced regime for the Burkert
profile, which has a flatter central gravitational potential and can be eventually even further
suppressed by adopting Osipkov-Merritt’s DM orbital anisotropy. As for what regards βc
models in context of non-parametric density profile, they are physical and can be computed,
however would yield higher J-factor, irrelevant for what concern the problem of addressing
conservative upper bound on the DM pair annihilation cross-section.

4 Conclusion

Dwarf spheroidal galaxies of the Milky Way occupy a leading role in the indirect search
program: in the gamma-ray band they unquestionably offer a golden channel for the detection
of the elusive Dark Matter particle. An accurate prediction of the photon flux due to particle

4Regarding the peculiar shape of J2 errors for Sextans assuming a NFW profile we need to underline that
in this case our results are actually affected by the choice of the inner cut-off radius rmin we need to introduce
for numerical convergence: a significant number points in the MCMC chain end up at rs < rmin, leading to
nearly identical J-factors; this results in central values lying right at the upper boundary of the 68% h.p.d.
region, with the exception of OM model for which the contribution around rs is suppressed.
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Figure 7. Left : comparison of our results for non-enhanced J-factors with previous works. Right : re-
sults for Sommerfeld-enhanced J-factors for different PSDF under consideration in the Coulomb
regime (lower points) and resonant regime (upper points).

annihilation in the galactic halo of these objects is of great relevance for the community and
timely for the progress in the field.

In the recent years, an increasing attention has been devoted to quantify the robustness
of such prediction, looping over a variety of uncertainties, mainly of astrophysical origin. The
majority of these analyses were restricted to a benchmark case where velocity-dependent ef-
fects — pertaining to the playground of Particle Physics — can be neglected. A few recent
studies on the subject opened up to a broader investigation, where velocity-dependent con-
tributions from the DM annihilation cross-section have been consistently taken into account
in the prediction for the gamma-ray flux, see [29–31].

It is important to note that in such analyses one is generally exposed to a large set of
systematics, stemming from the lack of any precise information about the galactic phase-
space distribution of DM particles. In this work we have performed the first steps towards a
data-based, comprehensive investigation of this issue, inspecting the prediction of the gamma-
ray flux from galactic DM yields in relation to the underlying DM phase-space distribution
function. While our approach can be easily applied to any spherical (DM dominated) system,
our attention here focussed on the case of the brightest Milky Way dwarf satellites. These
are primary targets for DM indirect detection, with a very good sample of measurements
on the kinematics of their faint stellar components, which trace the gravitational potential
dominated by DM. Moreover, the DM velocity probed in dwarf galactic halos falls in the
deep non-relativistic regime, where possible long-range interactions — as described by the
well-known Sommerfeld effect [21–25] — become of significant phenomenological relevance.

We started our investigation by performing a MCMC analysis of the stellar kinematic
dataset available for the eight classical dwarf spheroidals. Within the framework of the spher-
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ical Jeans analysis, we estimated the DM halo parameters via Bayesian inference, considering
both the case of cuspy (NFW) and cored (Burkert) halo profiles. Particular care has been
taken for the inclusion of several sources of observational and theoretical uncertainties, some
of them overlooked in previous studies, e.g. the one concerning the heliocentric distance of
the dwarf galaxy. An optimal description of the stellar kinematics of the classical dwarf
spheroidals was obtained for both cuspy and cored scenarios, see figure 3. Most notably, for
these objects we have reassessed the evaluation of the line-of-sight integrated halo density
squared, i.e. the so-called J-factor. This work presents a state-of-the-art analysis, which
gives good agreement with the most recent findings in literature [12, 14, 15], see figure 7. In
the same figure we provide a more conservative estimate of J on the basis of a modelling of
the density directly connected to line-of-sight observable quantities, paying once again atten-
tion to spectroscopic and photometric error propagation. For this non-parametric approach,
we followed the procedure outlined in detail in [40, 41], and have obtained as a final outcome
the lower limits reported as gray arrows in figure 7.

The major novelty of our work consists in a deep study of the generalized notion of
the J-factor in order to account for velocity effects stemming from the Sommerfeld enhance-
ment. In particular, we inspected the crucial interplay of this quantity with the assumption
regarding the galactic DM phase-space distribution function. In practice, we exploited the
outcome of our Bayesian fits to indirectly probe four distinct classes of phase-space mod-
elling, without necessarily relying on a vanishing DM anisotropy, the basic assumption of
all previous investigations on the subject. Specifically, for what concerns isotropic distribu-
tion functions, we have analyzed the case of the Maxwell-Boltzmann approximation and the
limit of ergodic systems via Eddington’s inversion formula. Going beyond the standard lore
of isotropic phase-space modelling, we have considered the scenario of radially biased DM
particle orbits within the so-called Osipkov-Merritt model, see eq. (2.11), as well as analyzed
tangential-like motion with the study case provided by βDM(r) = −1/2. We discussed the
main trends, first considering single particle velocities, then inspecting the impact on J-factor
via its radial shell contribution.

Our main findings in connection with the analyzed observational dataset for Milky Way
dwarf spheroidals are reported in the right panel of figure 7: we evaluated the posterior
distribution function of the Sommerfeld-enhanced J-factors according to the two peculiar
limits of phenomenological interest highlighted by eq. (3.12)–(3.13). For convenience, the
estimated J-values with corresponding highest density probability intervals are also reported
in table 1. In summary, the ordering of prime targets for indirect detection remains essentially
the same as in non-enhanced case, however the expected signals are enhanced by several
orders of magnitude, depending on the explicit values of particle physics parameters under
consideration. While reassessing the isotropic modeling on the basis of an elaborated data-
driven analysis, the key result of the present work is the evaluation of the J-factors for
Osipkov-Merritt and tangential-like scenarios: we have obtained a notable boost of J with
respect to the corresponding isotropic limit in the case of βDM(r) = −1/2, while we have found
a suppression of about the same ratio when the Osipkov-Merritt modelling was assumed
instead, with the extent of this suppression actually depending both on the parametrization
of the DM profile and the choice of anisotropy scale ra. Since there are no reliable constraints
on the velocity anisotropy of DM particles, these results should be interpreted as an increase
of the overall uncertainty of J-factors for velocity dependent annihilations and taken into
account by future analyses. We ended our investigation by analyzing also the case of non-
parametric DM density within the specific assumption of an ergodic system, demanded for
this case by the physical condition of a non-negative phase-space distribution function. We
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reported such scenario in the right panel of figure 7 with gray dots, highlighting the fact that
in presence of velocity-dependent effects it is no longer representative of a lower-limit for the
corresponding J .

In conclusion, our study has provided the first quantitative and data-based attempt
in literature to bracket the uncertainty in the prediction of prompt photon emission from
DM annihilation stemming from the modeling of the phase-space distribution function in
the classical dwarf satellites of the Galaxy. We wish to remark that the results reported
in figure 7 of this paper may trigger the interest of current experimental facilities such as
Fermi-LAT [73], HAWC [74], H.E.S.S [75], MAGIC [76] and VERITAS [77], and may be of
further relevance for next-gen ones, such as CTA [78], e-ASTROGAM [79] and AMEGO [80].
On more general grounds, we believe that the approach outlined in this work may serve as a
future baseline for a systematic investigation on the relevance of DM phase-space distribution
modelling in the vast realm of indirect searches.
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A Details on the computations of the present work

A.1 Boundary conditions in Eddington’s formula

For ergodic spherical systems, Eddington’s formula, eq. (2.10), allows to retrieve the phase
space distribution function f(E) corresponding to a given radial density profile ρ(r). The
derivation of the formula starts with noticing that at any radius r, the integral over velocities
of f (giving ρ) can be rewritten in terms of the relative potential and energy, respectively,
Ψ(r) = −Φ(r) + Φb and E = Ψ(r)− |~v|2/2:

ρ(r) =

∫
d3~v f(E) = 4π

∫ Ψ

0
dE
√

2(Ψ(r)− E) f(E) . (A.1)

Exploiting the fact that for any spherical system Ψ is a monotonic function of r, one can
treat Ψ as dependent variable to show that the derivative of ρ with respect to Ψ and f(E)
are in one-to-one correspondance via an Abel integral equation:

dρ

dΨ
= 2
√

2π

∫ Ψ

0
dE f(E)√

Ψ− E
; (A.2)

this can be inverted to find the expression for the distribution function given in Eddington’s
formula. This short recap was to remark that a given ergodic f(E) is indeed selected for i)
a given dρ/dΨ, plus ii) the boundary condition ρ(rb) = 0 at Ψ(rb) = 0 (as follows from the
expression in eq. (A.1)). Usually one takes the limit of an isolated system of infinite size,
extrapolating rb → ∞ (and hence Ψ(rb) → 0 corresponding to Φb = 0); in the case at hand
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however, since we are considering fairly small systems, we need to deal with a finite rb and
implement a different procedure.

Our starting point is a parametric form for ρDM(r), whose structure parameters, the
scale radius and a reference density, are fitted against dynamical data. Still, while dynamical
informations constrain mainly the inner portion of the profile, say the portion within the
half-light radius of the object, the fit is extrapolated outside this region and up to some shell
at which the density profile is truncated, accounting for the fact that dwarf satellites are well
within the potential well of the Galaxy and tidal effects reshape its outskirt. Among possible
ways to account for such truncation, we discuss here two.

As a first possibility, one may simply introduce a sharp cutoff in the density profile,
keeping the parametric form unchanged up to the boundary rb and just imposing ρDM(r >
rb) = 0. This procedure gives, up to r = rb, the same dρ/dΨ as in the case rb →∞, however
it is inconsistent with the boundary condition on ρ: the phase space distribution function
f(E), as retrieved from Eddington’s formula, does not trace ρ but actually:∫

d3~v f(E) = ρ(r)− ρ(rb) . (A.3)

E.g., for the Hernquist profile [81]:

ρH(r) =
ρs

(r/rs) (1 + r/rs)3
(A.4)

with sharp truncation at rb, one has:

ΨH(r) = 2πGNρsr
2
s

(
1

1 + r/rs
− 1

1 + rb/rs

)
≡ Ψ∞(r)−Ψb (A.5)

where Ψ∞ and Ψb have been defined correspondingly to the two terms in parenthesis, and
Ψ∞ refers to the result for rb → ∞. As in the case without the truncation, ΨH(r) can be
inverted and the integral in Eddington’s formula can be performed analytically; one finds:

fH(E) =
ρs

4
√

2π2C3/2

×

{√
Ẽ

[
3

(1− Ψ̃b) (1− Ψ̃b − Ẽ)2
+

2

(1− Ψ̃b)2 (1− Ψ̃b − Ẽ)
− 8(1 + 3Ψ̃b + 2Ẽ)

]

+
3

(1− Ψ̃b − Ẽ)5/2
arctan

( √
Ẽ√

1− Ψ̃b − Ẽ

)
+

2√
Ẽ

Ψ̃3
b

(1− Ψ̃b)2
(4− 3Ψ̃b)

}
(A.6)

with C ≡ 2πGNρsr
2
s and X̃ ≡ X/C for any of the quantities X above. Taking the limit

Ψ̃b → 0, fH(E) correctly reduces to the expression for the distribution function given in [81]
when assuming rb →∞. Integrating over velocities, one indeed finds:∫

d3~vfH(E) = ρs

(
Ψ̃4
∞

1− Ψ̃∞
−

Ψ̃4
b

1− Ψ̃b

)
= ρH(r)− ρH(rb) . (A.7)

To fill in the density gap one could consider to add to f(E) an extra term. One sample choice
could be:

fb(E , |~v|) =
ρ(rb)

4π

1

|~v|2
√

2E + |~v|2
, (A.8)
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While this correction is crucial for accurate density reconstruction, it has a smaller impact
on J-factors, which are dominated by the central contribution where the relative shift in
density is in general small, i.e. ρ2

DM(r ∼ rs)� ρ2
DM(rb) for typical truncation radius rb. This

remains true also in the velocity dependent regimes, since f(E) is even more sharply peaked
then the proposed fb(E , |~v|) in the E → Ψ(0) (which is the equivalent of ~v → 0) limit. We
checked this also numerically and indeed found even smaller effect on J-factors then in the
velocity-independent case.

As a second possibility to modify the density and impose ρDM(r > rb) = 0, one can
consider to introduce a smoothing function s(r) and make the replacement:

∀ rsm ≤ r ≤ rb ρ(r)→ ρ(r) · s(r) , (A.9)

taking care that the new density profile and its derivative are continuous in rsm and rb, hence
imposing:

s(r = rsm) = 1, s(r = rb) = 0,
ds

dr
(r = rsm) = 1 &

ds

dr
(r = rb) = 0. (A.10)

The lowest order polynomial function satisfying these conditions is:

s(r) = 3
(rb − r)2

(rb − rsm)2
− 2

(rb − r)3

(rb − rsm)3
. (A.11)

While this approach in principle reduces to the sharp cutoff case when rsm → rb it is not in
general possible to take this limit smoothly: there is no guarantee that Eddington’s formula
provides a physical result, namely that it satisfies the physical requirement that f(E) is
positive definite; this is indeed the case for any of the parametric profiles considered in this
analysis, but it can be violated when the profile is modified according to the prescription
in eq. (A.9) if the smoothing function makes the profile change too rapidly. For a given
profile and a given rb, one can find numerically the largest possible rsm for which f(E) is
physical. For both NFW and Burket profiles we find as a upper limit on the smoothing
scale rsm ≈ 0.67rb, nearly independent of rb as long as rb � rs. The situation is slightly
worse for our non-parametric profile, obtained from the Jeans inversion method, for which
f(E) is positive definite as long as rsm/rb / 0.58. Smooth truncation has even smaller effect
on J-factors as the central part within rsm remains unmodified. Apart from this, smooth
truncation has also advantage in being easier to treat numerically and does not need an
ad-hoc correction term. We verified that in general other smoothing functions, such as a
larger order polynomials, require even smaller rsm and hence introduce larger impact on the
J-factors.

The discussion in case of the Osipkov-Merritt models is specular; the only extra ingredi-
ent is that also the radial anisotropy factor (1 + r2/r2

a) may drive the Abel inversion formula
to an unphysical f(Q). One finds that in general ra cannot be extrapolated below a given
fraction of the scale radius rs, depending on the parametric form of the profile, as well as
on rb and eventually rsm (this is true also when extrapolating rb → ∞). For instance, for a
NFW profile we found the minimum ra/rs ≈ 0.35 while for a Burket profile the situation is
slightly worse, with the limit at ra/rs ≈ 0.75; these values are again roughly constant as long
as rs � rsm � rb. As a final remark we note that our non-parametric density profile is essen-
tially incompatible with Osipkov-Merritt model truncated by s(r). We found non-negative
f(Q) only for ra/rs & 10, which practically coincides with the isotropic case.
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A.2 Integrals over velocities of the DM distribution functions

As already discussed in section 3.2, when the annihilation probability depends on the relative
velocity of the DM particles in a pair, the J-factor integrand for spherically symmetric DM
profiles contains the radially dependent rescaling function 〈S(vrel)〉(r) introduced in eq. (3.10).
In most cases it cannot be computed analytically; it is then essential to implement an efficient
numerical calculation, taking into account what variable(s) fDM is effectively dependent on.

For ergodic cases, since each distribution function is in form fDM(Ei) with Ei = Ei(r, |~vi|),
one possible choice is to perform the integral by changing variables from the velocity of the
two particles (~v1, ~v2) to the center of mass velocity and relative velocity (~vcm, ~vrel) (namely
~vcm = (~v1 + ~v2)/2 and ~vrel = ~v1 − ~v2). As detailed, e.g., in [32], this choice leads to a three
dimensional integral in |~vcm|, |~vrel| and the angle between ~vcm and ~vrel. In case of MB velocity
distributions, see eq. (2.8), this is particularly convenient since the integral over the angle
and |~vcm| can be performed analytically and only a 1-dimensional numerical integral remains;
except if you need to track the dependence of result on |~vrel|, in all other ergodic cases these
there is actually no gain with respect to keeping the initial variable choice and reduce to
a numerical computation in |~v1|, |~v2| and the angle between ~v1 and ~v2 (which is essentially
what we do in our numerical implementation, we only replace |~vi| with Ei).

For the general case, in which the distribution function depends on both Ei and the
modulus of the angular momentum Li, the computation of 〈S(vrel)〉(r) involves 5 numerical
integrals at any given value of r, definitely too demanding for large parameter space scans.
In the two cases considered in this paper, the Osipkov-Merritt models and models with
factorizable Li dependence and constant anisotropy, the numerical evaluation can, however,
be simplified. The natural choice is to perform the integral in spherical coordinates for the
velocity space of each of the two particles, choosing the polar angle ηi as the angle between
~vi and ~r (and hence with Li = r |~vi|Si; here and below we have shortened the notation
introducing Si ≡ sin ηi and Ci ≡ cos ηi). It is then convenient to replace the integral over the
azimuthal angles φ1 and φ2 with those on φ+ ≡ (φ1 + φ2)/2 and φrel ≡ φ1 − φ2, given that
there is no dependence on the azimuthal angles in fDM, and |~vrel| depends only on φrel:

|~vrel| = [|~v1|2 + |~v2|2 − 2|~v1||~v2|(S1S2 cosφrel + C1C2)]1/2 . (A.12)

The integration over φ+ is then trivial, giving a factor of 2π. Of the remaining 5 integrals,
we can consider first those 3 with integrand that — in our reference cases — does not (even
implicitly) depend on any of the parameters for the Bayesian fits of the density profiles.
When performing a scan, this part of the numerical calculation can be precomputed and
stored as a tabulated function, to be linked for every point in the parameter space. The
general structure takes the form:

〈S(vrel)〉(r) =
2π

ρ2
DM(r)

∫ Ψ(r)

0
dX1 gDM(X1)

∫ Ψ(r)

0
dX2 gDM(X2)S(r,X1, X2) (A.13)

with the function to be tabulated:

S(r,X1, X2) =

∫ +1

−1
dC1
|~v1|2

L2βc
1

∣∣∣∣∂|~v1|
∂X1

∣∣∣∣ ∫ +1

−1
dC2
|~v2|2

L2βc
2

∣∣∣∣∂|~v2|
∂X2

∣∣∣∣ ∫ 2π

0
dφr S(|~vrel|) . (A.14)

Here we have defined, in case of the Osipkov-Merritt models:

Xi ≡ Qi = Ψ(r)− (1 + r2/r2
a S

2
i ) |~vi|2/2 , gDM(Xi) ≡ fDM,OM(Qi) , βc ≡ 0 , (A.15)
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while, for the models with constant anisotropy βc 6= 0:

Xi ≡ Ei = Ψ(r)− |~vi|2/2 , gDM(Xi) ≡ fDM, βc(Ei, Li = L0) . (A.16)

The picture simplifies further when S(|~vrel|) describes the enhancement in the flux due to the
Sommerfeld effect, and in case one is interested only at the Coulomb or the resonant regimes in
the Hulten’s potential, with scalings, respectively, S(|~vrel|) ∝ 1/|~vrel| and S(|~vrel|) ∝ 1/|~vrel|2.
Recasting the expression in eq. (A.12) above in the form |~vrel| ≡ (A−B cosφrel)

1/2, one finds:

∫ 2π

0
φrel |~vrel|−α =


4√

A−B
K

(
− 2B

A−B

)
for α = 1

2π√
A2 −B2

for α = 2

(A.17)

where K(m) is the complete elliptic integral of the first kind:

K(m) =

∫ π
2

0

dx√
1−m sin2 x

, (A.18)

a function which can be very efficiently approximated through its relation to arithmetic-
geometric mean, see e.g. [82]. The integrals on C1 and C2 in eq. (A.14) have still to be
performed numerically, however the dependence on the external variables partially factor-
izes: introducing X̄i ≡ Xi/Ψ, being the velocity of the two particles in the form |~vi| =√

Ψ
√

1− X̄i F (r, ηi), we redefine:√
1− X̄1 ≡ R cosϑ and

√
1− X̄2 ≡ R sinϑ , (A.19)

i.e.:

R =
√

2− X̄1 − X̄2 with 0 ≤ R ≤
√

2 , and tanϑ =

√
1− X̄2

1− X̄1
with 0 ≤ ϑ ≤ π

2
.

(A.20)
It follows that one can extract the scalings in

√
Ψ and R in eq. (A.14):

S(r,X1, X2) =
(√

ΨR
)2−α−4βc

S̄(r, ϑ) , (A.21)

where the scaling with r of the new function we introduced goes simply as r−4βc for the case
of constant anisotropy models, and is very close to a power law even for Osipkov-Merritt
models when r � ra. Finally, using symmetries of the integrand function one can show that:

S̄ = S̄(r, π/2− ϑ) for π/4 ≤ ϑ ≤ π/2 , (A.22)

and that the numerical integrals on C1 and C2 can be both reduces to the interval [0, 1].

B J-factor scaling relation

Precise evaluation of J-factors turns out to be too computationally demanding to run it for
all the samples produced by the MCMC walkers, even when using the shortcut discussed in
previous section. Therefore we resort to scaling relations which allow us to extrapolate the
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Figure 8. J-factor scaling under change of physical length r → λr for NFW and Burkert profiles
with nominal values of rs = 1 kpc, D = 100 kpc and ρs = 1 GeV/cm3.

values to arbitrary halo parameters without the need of recomputing the nested numerical
integrals in eq. (1.2). More precisely, it is possible to obtain exact scaling relations for a
change in the DM scale density ρs → µρs and physical length scale r → λr, which also
applies to all distance parameters, e.g. rs and D. For all spherically symmetric density
profiles of the form ρDM(r; ρs, rs) = ρs · f(r/rs), where f(x) is an arbitrary function, it is
possible to show the following relation:

J(rs/D ; µρs, λrs, λD) = J(rs/D ; ρs, rs, D)×


µ2λ for ξ � 1 ,

µ3/2 for ξ � 1 ,

µ/λ for ξ = 6/
(
π2n2

)
.

(B.1)

While the effect of varying ρs is quite clear, the scaling with λ is somewhat less expected
and is in fact broken by the radial cut-offs, which we kept constant. We numerically checked
the deviations from the above relation and found excellent agreement except for resonantly
enhanced NFW profile, where we found scaling exponent of ∼ −0.8 instead of −1. This is a
consequence of using static inner cut-off, which removes an increasingly significant amount
of the DM cusp for decreasing values of λ. We present the comparison of power-law scalings
with the numerical results in figure 8. Some deviations also arise at small/large values of λ
where the effect of cut-offs again becomes noticeable, however when considering dSphs one
mostly deals with λ ∼ O(1). Using this shortcut the J-factors can be thought of as only a
function of rs/D, for which however we found no analytical form. Instead we interpolated
J(rs/D) which, together with scaling relations, allowed us to compute accurate J-factor
posterior distributions from the entire MCMC sample.
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