33 research outputs found

    Ultrahigh Energy Cosmic Rays and Neutrinos

    Full text link
    The observation of neutrinos from cosmic accelerators will be revolutionary. High energy neutrinos are closely connected to ultrahigh energy cosmic rays and their sources. Cosmic ray sources are likely to produce neutrinos and the propagation of ultrahigh cosmic rays from distant sources can generate PeV to ZeV neutrinos. We briefly review recent progress on the observations of ultrahigh energy cosmic rays and their implications for the future detections of high energy neutrinos.Comment: 6 pages, 2 figures, Proceedings of NOW (Neutrino Oscillation Workshop) 2010, to appear in Nucl. Phys. B (Proc. Suppl.

    The spectrum features of UHECRs below and surrounding GZK

    Full text link
    The energy spectrum of UHECRs is discussed on the basis of the Yakutsk array database analysis. In the region E=0.1 to 30 EeV the showers are detected under trigger-500, while at energies above 30 EeV the whole acceptance area for trigger-1000 is used in order to utilize all the data available in the region of GZK cutoff.Comment: Invited talk at CRIS2004: GZK and surroundings, Catania, Italy, 31.05.04. To appear in Nucl. Phys. B Proc. Supp

    Non-Critical Liouville String Escapes Constraints on Generic Models of Quantum Gravity

    Get PDF
    It has recently been pointed out that generic models of quantum gravity must contend with severe phenomenological constraints imposed by gravitational Cerenkov radiation, neutrino oscillations and the cosmic microwave background radiation. We show how the non-critical Liouville-string model of quantum gravity we have proposed escapes these constraints. It gives energetic particles subluminal velocities, obviating the danger of gravitational Cerenkov radiation. The effect on neutrino propagation is naturally flavour-independent, obviating any impact on oscillation phenomenology. Deviations from the expected black-body spectrum and the effects of time delays and stochastic fluctuations in the propagation of cosmic microwave background photons are negligible, as are their effects on observable spectral lines from high-redshift astrophysical objects.Comment: 15 pages LaTeX, 2 eps figures include

    Ultra-High Energy Cosmic Rays from Neutrino Emitting Acceleration Sources?

    Get PDF
    We demonstrate by numerical flux calculations that neutrino beams producing the observed highest energy cosmic rays by weak interactions with the relic neutrino background require a non-uniform distribution of sources. Such sources have to accelerate protons at least up to 10^{23} eV, have to be opaque to their primary protons, and should emit the secondary photons unavoidably produced together with the neutrinos only in the sub-MeV region to avoid conflict with the diffuse gamma-ray background measured by the EGRET experiment. Even if such a source class exists, the resulting large uncertainties in the parameters involved in this scenario does currently not allow to extract any meaningful information on absolute neutrino masses.Comment: 6 pages, 4 figures, RevTeX styl

    Ultra-High Energy Neutrino Fluxes and Their Constraints

    Full text link
    Applying our recently developed propagation code we review extragalactic neutrino fluxes above 10^{14} eV in various scenarios and how they are constrained by current data. We specifically identify scenarios in which the cosmogenic neutrino flux, produced by pion production of ultra high energy cosmic rays outside their sources, is considerably higher than the "Waxman-Bahcall bound". This is easy to achieve for sources with hard injection spectra and luminosities that were higher in the past. Such fluxes would significantly increase the chances to detect ultra-high energy neutrinos with experiments currently under construction or in the proposal stage.Comment: 11 pages, 15 figures, version published in Phys.Rev.

    Large Scale Magnetic Fields and the Number of Cosmic Ray Sources above 10^(19) eV

    Get PDF
    We present numerical simulations for the two-point correlation function and the angular power spectrum of nucleons above 10^{19} injected by a discrete distribution of sources following a simple approximation to the profile of the Local Supercluster. We develop a method to constrain the number of sources necessary to reproduce the observed sky distribution of ultra-high energy cosmic rays, as a function of the strength of the large scale cosmic magnetic fields in the Local Supercluster. While for fields B < 0.05 micro Gauss the Supercluster source distribution is inconsistent with the data for any number of sources, fields of strength B~0.3 micro Gauss could reproduce the observed data with a number of sources around 10.Comment: 10 latex pages, 17 postscript figures include

    New hadrons as ultra-high energy cosmic rays

    Get PDF
    Ultra-high energy cosmic ray (UHECR) protons produced by uniformly distributed astrophysical sources contradict the energy spectrum measured by both the AGASA and HiRes experiments, assuming the small scale clustering of UHECR observed by AGASA is caused by point-like sources. In that case, the small number of sources leads to a sharp exponential cutoff at the energy E<10^{20} eV in the UHECR spectrum. New hadrons with mass 1.5-3 GeV can solve this cutoff problem. For the first time we discuss the production of such hadrons in proton collisions with infrared/optical photons in astrophysical sources. This production mechanism, in contrast to proton-proton collisions, requires the acceleration of protons only to energies E<10^{21} eV. The diffuse gamma-ray and neutrino fluxes in this model obey all existing experimental limits. We predict large UHE neutrino fluxes well above the sensitivity of the next generation of high-energy neutrino experiments. As an example we study hadrons containing a light bottom squark. These models can be tested by accelerator experiments, UHECR observatories and neutrino telescopes.Comment: 17 pages, revtex style; v2: shortened, as to appear in PR

    Infrared and ultraviolet cutoffs of quantum field theory

    Get PDF
    Quantum gravity arguments and the entropy bound for effective field theories proposed in PRL 82, 4971 (1999) lead to consider two correlated scales which parametrize departures from relativistic quantum field theory at low and high energies. A simple estimate of their possible phenomenological implications leads to identify a scale of around 100 TeV as an upper limit on the domain of validity of a quantum field theory description of Nature. This fact agrees with recent theoretical developments in large extra dimensions. Phenomenological consequences in the beta-decay spectrum and cosmic ray physics associated to possible Lorentz invariance violations induced by the infrared scale are discussed. It is also suggested that this scale might produce new unexpected effects at the quantum level.Comment: 5 pages, no figures; general discussion improved, main results unchanged. Version to appear in PR

    New precision measurement of the J/ψJ/\psi- and ψ\psi' -meson masses

    Full text link
    A new high precision measurement of the J/ψJ/\psi- and ψ\psi'-meson masses has been performed at the VEPP-4M collider using the KEDR detector. The resonant depolarization method has been employed for the absolute calibration of the beam energy. The following mass values have been obtained: MJ/ψ=3096.917±0.010±0.007M_{J/\psi} = 3096.917 \pm 0.010 \pm 0.007 MeV, Mψ=3686.111±0.025±0.009M_{\psi'} = 3686.111 \pm 0.025 \pm 0.009 MeV. The relative measurement accuracy has reached 4.1064. 10^{-6} for J/ψJ/\psi and 7.1067. 10^{-6} for ψ\psi', approximately 3 times better than in the previous precise experiments.Comment: 12 pages, 4 tables, 10 figure

    Ultra-High Energy Cosmic Ray Probes of Large Scale Structure and Magnetic Fields

    Full text link
    We study signatures of a structured universe in the multi-pole moments, auto-correlation function, and cluster statistics of ultra-high energy cosmic rays above 10^19 eV. We compare scenarios where the sources are distributed homogeneously or according to the baryon density distribution obtained from a cosmological large scale structure simulation. The influence of extragalactic magnetic fields is studied by comparing the case of negligible fields with fields expected to be produced along large scale shocks with a maximal strength consistent with observations. We confirm that strongly magnetized observers would predict considerable anisotropy on large scales, which is already in conflict with current data. In the best fit scenario only the sources are strongly magnetized, although deflection can still be considerable, of order 20 degrees up to 10^20 eV, and a pronounced GZK cutoff is predicted. We then discuss signatures for future large scale full-sky detectors such as the Pierre Auger and EUSO projects. Auto-correlations are sensitive to the source density only if magnetic fields do not significantly affect propagation. In contrast, for a weakly magnetized observer, degree scale auto-correlations below a certain level indicate magnetized discrete sources. It may be difficult even for next generation experiments to distinguish between structured and unstructured source distributions.Comment: 17 revtex pages, 29 ps figures, published version with minor changes, see http://link.aps.org/abstract/PRD/v70/e04300
    corecore