778 research outputs found

    Superplastic Deformation Behavior of High-Temperature Titanium Alloys VT8 and Ti6242S

    Get PDF
    Superplastic forming (SPF) is an effective process that allows for forming the sheet metal parts of complex configuration. Superplastic deformation behavior of conventional sheets of a high temperature titanium alloys VT8 и Ti6242S was studied by constant strain rate tests in a temperature range of 850–950 ∘C. The research identified the optimum superplastic temperature of studied alloys in a constant strain rate of 3 × 10−4 s −1 with elongation above 150 %.     Keywords: superplasticity, titanium alloys, stress, elongation

    Influence of Inorganic Nano-powders on the Structure and Conductive Properties of the Network Polymer Electrolytes for Lithium Batteries

    Get PDF
    The paper describes investigation on the network polymer electrolytes based on polyethylene glycol diacrylates and polyester diacrylates PEDA with introduction the nanopowders TiO2, Li2TiO3 and SiO2, with different size and shape. Much attention is paid to effects of nanoparticles additives on the ionic conductivity of network polymer electrolytes. The work is aimed to explanation of the mechanism of additives action on Li+ - ion transport and structural changes of the polymer chains and the solvent molecules. For these purposes the NMR method with rotation under a magic corner on nuclei 1H and NMR method with a pulsed magnetic field gradient at the nuclei 7Li were used. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3551

    Coherent Charge Transport in Metallic Proximity Structures

    Full text link
    We develop a detailed microscopic analysis of electron transport in normal diffusive conductors in the presence of proximity induced superconducting correlation. We calculated the linear conductance of the system, the profile of the electric field and the densities of states. In the case of transparent metallic boundaries the temperature dependent conductance has a non-monotoneous ``reentrant'' structure. We argue that this behavior is due to nonequilibrium effects occuring in the normal metal in the presence of both superconducting correlations and the electric field there. Low transparent tunnel barriers suppress the nonequilibrium effects and destroy the reentrant behavior of the conductance. If the wire contains a loop, the conductance shows Aharonov-Bohm oscillations with the period Φ0=h/2e\Phi_0=h/2e as a function of the magnetic flux Φ\Phi inside the loop. The amplitude of these oscillations also demonstrates the reentrant behavior vanishing at T=0T=0 and decaying as 1/T1/T at relatively large temperatures. The latter behavior is due to low energy correlated electrons which penetrate deep into the normal metal and ``feel'' the effect of the magnetic flux Φ\Phi. We point out that the density of states and thus the ``strengh'' of the proximity effect can be tuned by the value of the flux inside the loop. Our results are fully consistent with recent experimental findings.Comment: 16 pages RevTeX, 23 Postscript figures, submitted to Phys. Rev.

    On the Origin of the Enhancementof CP-violating Charge Asymmetries in K3πK \rightarrow 3\pi Decays Predicted from Chiral Theory

    Full text link
    We present an analysis of the enhancement of CP-violating charge asymmetries in K3πK \rightarrow 3\pi decays. Calculations of decay amplitudes are performed on the basis of bosonized strong and weak Lagrangians derived from QCD-motivated quark Lagrangians. We show that the interplay of fourth-order contributions of chiral Lagrangians for strong interactions and penguin operators in weak interactions significantly enhances the charge asymmetries.Comment: DESY 92-106, 15

    Nonequilibrium Josephson effect in short-arm diffusive SNS interferometers

    Full text link
    We study non-equilibrium Josephson effect and phase-dependent conductance in three-terminal diffusive interferometers with short arms. We consider strong proximity effect and investigate an interplay of dissipative and Josephson currents co-existing within the same proximity region. In junctions with transparent interfaces, the suppression of the Josephson current appears at rather large voltage, eVΔeV\sim \Delta, and the current vanishes at eVΔeV\geq\Delta. Josephson current inversion becomes possible in junctions with resistive interfaces, where the inversion occurs within a finite interval of the applied voltage. Due to the presence of considerably large and phase-dependent injection current, the critical current measured in a current biased junction does not coincide with the maximum Josephson current, and remains finite when the true Josephson current is suppressed. The voltage dependence of the conductance shows two pronounced peaks, at the bulk gap energy, and at the proximity gap energy; the phase oscillation of the conductance exhibits qualitatively different form at small voltage eV<ΔeV<\Delta, and at large voltage eV>ΔeV>\Delta.Comment: 11 pages, 9 figures, revised version, to be published in Phys. Rev.

    Microscopic nonequilibrium theory of double-barrier Josephson junctions

    Get PDF
    We study nonequilibrium charge transport in a double-barrier Josephson junction, including nonstationary phenomena, using the time-dependent quasiclassical Keldysh Green's function formalism. We supplement the kinetic equations by appropriate time-dependent boundary conditions and solve the time-dependent problem in a number of regimes. From the solutions, current-voltage characteristics are derived. It is understood why the quasiparticle current can show excess current as well as deficit current and how the subgap conductance behaves as function of junction parameters. A time-dependent nonequilibrium contribution to the distribution function is found to cause a non-zero averaged supercurrent even in the presence of an applied voltage. Energy relaxation due to inelastic scattering in the interlayer has a prominent role in determining the transport properties of double-barrier junctions. Actual inelastic scattering parameters are derived from experiments. It is shown as an application of the microscopic model, how the nature of the intrinsic shunt in double-barrier junctions can be explained in terms of energy relaxation and the opening of Andreev channels.Comment: Accepted for Phys. Rev.

    Search for the radiative decay ηπ0γγ\eta \to \pi^0 \gamma \gamma in the SND experiment at VEPP-2M

    Full text link
    The ηπ0γγ\eta \to \pi^0 \gamma \gamma decay was investigated by the SND detector at VEPP-2M e+ee^+e^- collider in the reaction e+eϕηγe^+e^-\to\phi\to \eta\gamma. Here we present the results and some details of this study. We report an upper limit (90% c.l.) Br(ηπ0γγ)<8.4×104Br(\eta \to \pi^0 \gamma \gamma)<8.4\times 10^{-4} as our final result. Our upper limit does not contradict the earlier measurement by GAMS spectrometer. To facilitate future studies a rather detailed review of the problem is also given.Comment: 24 pages, 6 figures, LaTex. To be published in Nucl. Phys.
    corecore