31 research outputs found

    Foundation of Equilibrium Statistical Mechanics Based on Generalized Entropy

    Get PDF
    The general mathematical formulation of the equilibrium statistical mechanics based on the generalized statistical entropy for the first and second thermodynamic potentials was given. The Tsallis and Boltzmann-Gibbs statistical entropies in the canonical and microcanonical ensembles were investigated as an example. It was shown that the statistical mechanics based on the Tsallis statistical entropy satisfies the requirements of equilibrium thermodynamics in the thermodynamic limit if the entropic index z=1/(q-1) is an extensive variable of state of the system

    Equilibrium statistical mechanics for incomplete nonextensive statistics

    Full text link
    The incomplete nonextensive statistics in the canonical and microcanonical ensembles is explored in the general case and in a particular case for the ideal gas. By exact analytical results for the ideal gas it is shown that taking the thermodynamic limit, with z=q/(1q)z=q/(1-q) being an extensive variable of state, the incomplete nonextensive statistics satisfies the requirements of equilibrium thermodynamics. The thermodynamical potential of the statistical ensemble is a homogeneous function of the first degree of the extensive variables of state. In this case, the incomplete nonextensive statistics is equivalent to the usual Tsallis statistics. If zz is an intensive variable of state, i.e. the entropic index qq is a universal constant, the requirements of the equilibrium thermodynamics are violated.Comment: 7 page

    Extensive Renyi Statistics from Non-Extensive Entropy

    Full text link
    We show that starting with either the non-extensive Tsallis entropy in Wang's formalism or the extensive Renyi entropy, it is possible to construct the equilibrium statistical mechanics with non-Gibbs canonical distribution functions. The transformation formulas between Tsallis statistics and Renyi statistics are presented. The one-particle distribution function in Renyi statistics with extensive entropy for the classical ideal gas at finite particle number develops a power-law tail for high momenta.Comment: 14 pages, 2 figures, LaTe

    Transverse momentum distributions of hadrons in the Tsallis-1 and Tsallis-2 statistics

    Full text link
    We considered the ultrarelativistic transverse momentum distributions of the Tsallis-1 and Tsallis-2 statistics using two regularization schemes. It was revealed that the cut-off parameter strongly influences the behavior of the transverse momentum distribution in both statistics. We have also found that the ultrarelativistic transverse momentum distribution of the Tsallis-1 statistics is transformed to the momentum distribution of the Tsallis-2 statistics by identifying q → 1/qc

    Fractional exclusion statistics applied to relativistic nuclear matter

    Full text link
    The effect of statistics of the quasiparticles in the nuclear matter at extreme conditions of density and temperature is evaluated in the relativistic mean-field model generalized to the framework of the fractional exclusion statistics (FES). In the model, the nucleons are described as quasiparticles obeying FES and the model parameters were chosen to reproduce the ground state properties of the isospin-symmetric nuclear matter. In this case, the statistics of the quasiparticles is related to the strengths of the nucleon-nucleon interaction mediated by the neutral scalar and vector meson fields. The relevant thermodynamic quantities were calculated as functions of the nucleons density, temperature and fractional exclusion statistics parameter α\alpha. It has been shown that at high temperatures and densities the thermodynamics of the system has a strong dependence on the statistics of the particles. The scenario in which the nucleon-nucleon interaction strength is independent of the statistics of particles was also calculated, but it leads in general to unstable thermodynamics.Comment: 17 pages, 7 figure

    Quantum Statistical Model of Nuclear Multifragmentation in the Canonical Ensemble Method

    Get PDF
    A quantum statistical model of nuclear multifragmentation is proposed. The recurrence equation method used within the canonical ensemble makes the model solvable and transparent to physical assumptions and allows to get results without involving the Monte Carlo technique. The model exhibits the first order phase transition. Quantum statistics effects are clearly seen on the microscopic level of occupation numbers but are almost washed out for global thermodynamic variables and the averaged observables studied. In the latter case, the recurrence relations for multiplicity distributions of both intermediate-mass and all fragments are derived and the specific changes in the shape of multiplicity distributions in the narrow region of the transition temperature is stressed. The temperature domain favorable to search for the HBT effect is noted.Comment: 38 pages, 11 figure

    Nonextensive statistical effects in the quark-gluon plasma formation at relativistic heavy-ion collisions energies

    Full text link
    We investigate the relativistic equation of state of hadronic matter and quark-gluon plasma at finite temperature and baryon density in the framework of the non-extensive statistical mechanics, characterized by power-law quantum distributions. We impose the Gibbs conditions on the global conservation of baryon number, electric charge and strangeness number. For the hadronic phase, we study an extended relativistic mean-field theoretical model with the inclusion of strange particles (hyperons and mesons). For the quark sector, we employ an extended MIT-Bag model. In this context we focus on the relevance of non-extensive effects in the presence of strange matter.Comment: 12 pages, 5 figure

    Modified Hagedorn formula including temperature fluctuation - Estimation of temperatures at RHIC experiments -

    Get PDF
    We have systematically estimated the possible temperatures obtained from an analysis of recent data on ptp_t distributions observed at RHIC experiments. Using the fact that observed ptp_t distributions cannot be described by the original Hagedorn formula in the whole range of transverse momenta (in particular above 6 GeV/c), we propose a modified Hagedorn formula including temperature fluctuation. We show that by using it we can fit ptp_t distributions in the whole range and can estimate consistently the relevant temperatures, including their fluctuations.Comment: Some misprints corrected, references updated. To be published in Eur. Phys. J. C (2006

    Number Fluctuation and the Fundamental Theorem of Arithmetic

    Full text link
    We consider N bosons occupying a discrete set of single-particle quantum states in an isolated trap. Usually, for a given excitation energy, there are many combinations of exciting different number of particles from the ground state, resulting in a fluctuation of the ground state population. As a counter example, we take the quantum spectrum to be logarithms of the prime number sequence, and using the fundamental theorem of arithmetic, find that the ground state fluctuation vanishes exactly for all excitations. The use of the standard canonical or grand canonical ensembles, on the other hand, gives substantial number fluctuation for the ground state. This difference between the microcanonical and canonical results cannot be accounted for within the framework of equilibrium statistical mechanics.Comment: 4 pages, 4 figures. To be submitted to Phys. Rev. Let

    Thermodynamic Derivation of the Tsallis and R\'enyi Entropy Formulas and the Temperature of Quark-Gluon Plasma

    Get PDF
    We derive Tsallis entropy, Sq, from universal thermostat independence and obtain the functional form of the corresponding generalized entropy-probability relation. Our result for finite thermostats interprets thermodynamically the subsystem temperature, T1, and the index q in terms of the temperature, T, entropy, S, and heat capacity, C of the reservoir as T1 = T exp(-S/C) and q = 1 - 1/C. In the infinite C limit, irrespective to the value of S, the Boltzmann-Gibbs approach is fully recovered. We apply this framework for the experimental determination of the original temperature of a finite thermostat, T, from the analysis of hadron spectra produced in high energy collisions, by analyzing frequently considered simple models of the quark-gluon plasma.Comment: 4 pages 1 Figure PRL style, revised presentatio
    corecore