662 research outputs found

    Pulse shape analysis in segmented detectors as a technique for background reduction in Ge double-beta decay experiments

    Full text link
    The need to understand and reject backgrounds in Ge-diode detector double-beta decay experiments has given rise to the development of pulse shape analysis in such detectors to discern single-site energy deposits from multiple-site deposits. Here, we extend this analysis to segmented Ge detectors to study the effectiveness of combining segmentation with pulse shape analysis to identify the multiplicity of the energy deposits.Comment: 12 pages, 13 figures, will be submitted to NI

    Auger decay of degenerate and Bose-condensed excitons in Cu2_2O

    Full text link
    We study the non-radiative Auger decay of excitons in Cu2_2O, in which two excitons scatter to an excited electron and hole. The exciton decay rate for the direct and the phonon-assisted processes is calculated from first principles; incorporating the band structure of the material leads to a relatively shorter lifetime of the triplet state ortho excitons. We compare our results with the Auger decay rate extracted from data on highly degenerate triplet excitons and Bose-condensed singlet excitons in Cu2_2O.Comment: 15 pages, revtex, figures available from G. Kavoulaki

    Fine structure of excitons in Cu2_2O

    Full text link
    Three experimental observations on 1s-excitons in Cu2_2O are not consistent with the picture of the exciton as a simple hydrogenic bound state: the energies of the 1s-excitons deviate from the Rydberg formula, the total exciton mass exceeds the sum of the electron and hole effective masses, and the triplet-state excitons lie above the singlet. Incorporating the band structure of the material, we calculate the corrections to this simple picture arising from the fact that the exciton Bohr radius is comparable to the lattice constant. By means of a self-consistent variational calculation of the total exciton mass as well as the ground-state energy of the singlet and the triplet-state excitons, we find excellent agreement with experiment.Comment: Revised abstract; 10 pages, revtex, 3 figures available from G. Kavoulakis, Physics Department, University of Illinois, Urban

    The high-pressure phase of boron, {\gamma}-B28: disputes and conclusions of 5 years after discovery

    Full text link
    {\gamma}-B28 is a recently established high-pressure phase of boron. Its structure consists of icosahedral B12 clusters and B2 dumbbells in a NaCl-type arrangement (B2){\delta}+(B12){\delta}- and displays a significant charge transfer {\delta}~0.5- 0.6. The discovery of this phase proved essential for the understanding and construction of the phase diagram of boron. {\gamma}-B28 was first experimentally obtained as a pure boron allotrope in early 2004 and its structure was discovered in 2006. This paper reviews recent results and in particular deals with the contentious issues related to the equation of state, hardness, putative isostructural phase transformation at ~40 GPa, and debates on the nature of chemical bonding in this phase. Our analysis confirms that (a) calculations based on density functional theory give an accurate description of its equation of state, (b) the reported isostructural phase transformation in {\gamma}-B28 is an artifact rather than a fact, (c) the best estimate of hardness of this phase is 50 GPa, (d) chemical bonding in this phase has a significant degree of ionicity. Apart from presenting an overview of previous results within a consistent view grounded in experiment, thermodynamics and quantum mechanics, we present new results on Bader charges in {\gamma}-B28 using different levels of quantum-mechanical theory (GGA, exact exchange, and HSE06 hybrid functional), and show that the earlier conclusion about significant degree of partial ionicity in this phase is very robust

    A Quantum-Mechanical Equivalent-Photon Spectrum for Heavy-Ion Physics

    Get PDF
    In a previous paper, we calculated the fully quantum-mechanical cross section for electromagnetic excitation during peripheral heavy-ion collisions. Here, we examine the sensitivity of that cross section to the detailed structure of the projectile and target nuclei. At the transition energies relevant to nuclear physics, we find the cross section to be weakly dependent on the projectile charge radius, and to be sensitive to only the leading momentum-transfer dependence of the target transition form factors. We exploit these facts to derive a quantum-mechanical ``equivalent-photon spectrum'' valid in the long-wavelength limit. This improved spectrum includes the effects of projectile size, the finite longitudinal momentum transfer required by kinematics, and the response of the target nucleus to the off-shell photon.Comment: 19 pages, 5 figure

    Determination of the parameters of semiconducting CdF2:In with Schottky barriers from radio-frequency measurements

    Full text link
    Physical properties of semiconducting CdF_2 crystals doped with In are determined from measurements of the radio-frequency response of a sample with Schottky barriers at frequencies 10 - 10^6 Hz. The dc conductivity, the activation energy of the amphoteric impurity, and the total concentration of the active In ions in CdF_2 are found through an equivalent-circuit analysis of the frequency dependencies of the sample complex impedance at temperatures from 20 K to 300 K. Kinetic coefficients determining the thermally induced transitions between the deep and the shallow states of the In impurity and the barrier height between these states are obtained from the time-dependent radio-frequency response after illumination of the material. The results on the low-frequency conductivity in CdF_2:In are compared with submillimeter (10^{11} - 10^{12} Hz) measurements and with room-temperature infrared measurements of undoped CdF_2. The low-frequency impedance measurements of semiconductor samples with Schottky barriers are shown to be a good tool for investigation of the physical properties of semiconductors.Comment: 9 pages, 7 figure

    Quantum saturation and condensation of excitons in Cu2_2O: a theoretical study

    Full text link
    Recent experiments on high density excitons in Cu2_2O provide evidence for degenerate quantum statistics and Bose-Einstein condensation of this nearly ideal gas. We model the time dependence of this bosonic system including exciton decay mechanisms, energy exchange with phonons, and interconversion between ortho (triplet-state) and para (singlet-state) excitons, using parameters for the excitonic decay, the coupling to acoustic and low-lying optical phonons, Auger recombination, and ortho-para interconversion derived from experiment. The single adjustable parameter in our model is the optical-phonon cooling rate for Auger and laser-produced hot excitons. We show that the orthoexcitons move along the phase boundary without crossing it (i.e., exhibit a ``quantum saturation''), as a consequence of the balance of entropy changes due to cooling of excitons by phonons and heating by the non-radiative Auger two-exciton recombination process. The Auger annihilation rate for para-para collisions is much smaller than that for ortho-para and ortho-ortho collisions, explaining why, under the given experimental conditions, the paraexcitons condense while the orthoexcitons fail to do so.Comment: Revised to improve clarity and physical content 18 pages, revtex, figures available from G. Kavoulakis, Physics Department, University of Illinois, Urban

    The Emotionalization of Reflexivity

    Get PDF
    Reflexivity refers to the practices of altering one’s life as a response to knowledge about one’s circumstances. While theories of reflexivity have not entirely ignored emotions, attention to them has been insufficient. These theories need emotionalizing and this article proposes that emotions have become central to a subjectivity and sociality that is relationally constructed. The emotionalization of reflexivity not only refers to a theoretical endeavour but is a phrase used to begin to explore whether individuals are increasingly drawing on emotions in assessing themselves and their lives. It is argued that dislocation from tradition produces a reflexivity that can be very dependent on comparing experiences and can move others to reflect and reorder their own relations to self and others. Thus, emotions are crucial to how the social is reproduced and to enduring within a complex social world

    CUORE: A Cryogenic Underground Observatory for Rare Events

    Get PDF
    CUORE is a proposed tightly packed array of 1000 TeO2 bolometers, each being a cube 5 cm on a side with a mass of 760 g. The array consists of 25 vertical towers, arranged in a square of 5 towers by 5 towers, each containing 10 layers of 4 crystals. The design of the detector is optimized for ultralow-background searches: for neutrinoless double beta decay of 130Te (33.8% abundance), cold dark matter, solar axions, and rare nuclear decays. A preliminary experiment involving 20 crystals 3x3x6 cm3 of 340 g has been completed, and a single CUORE tower is being constructed as a smaller scale experiment called CUORICINO. The expected performance and sensitivity, based on Monte Carlo simulations and extrapolations of present results, are reported.Comment: 39 pages, 12 figures, submitted to NI
    corecore