85 research outputs found

    The extended, relativistic hyperon star model

    Get PDF
    In this paper an equation of state of neutron star matter which includes strange baryons in the framework of Zimanyi and Moszkowski (ZM) model has been obtained. We concentrate on the effects of the isospin dependence of the equation of state constructing for the appropriate choices of parameters the hyperons star model. Numerous neutron star models show that the appearance of hyperons is connected with the increasing density in neutron star interiors. Various studies have indicated that the inclusion of delta meson mainly affects the symmetry energy and through this the chemical composition of a neutron star. As the effective nucleon mass contributes to hadron chemical potentials it alters the chemical composition of the star. In the result the obtained model of the star not only excludes large population of hadrons but also does not reduce significantly lepton contents in the star interior.Comment: 22 pages, revtex4, 13 figure

    Strange Stars with a Density-Dependent Bag Parameter

    Full text link
    We have studied strange quark stars in the framework of the MIT bag model, allowing the bag parameter B to depend on the density of the medium. We have also studied the effect of Cooper pairing among quarks, on the stellar structure. Comparison of these two effects shows that the former is generally more significant. We studied the resulting equation of state of the quark matter, stellar mass-radius relation, mass-central-density relation, radius-central-density relation, and the variation of the density as a function of the distance from the centre of the star. We found that the density-dependent B allows stars with larger masses and radii, due to stiffening of the equation of state. Interestingly, certain stellar configurations are found to be possible only if B depends on the density. We have also studied the effect of variation of the superconducting gap parameter on our results.Comment: 23 pages, 8 figs; v2: 25 pages, 9 figs, version to be published in Phys. Rev. (D

    Effect of Sn on the Dehydrogenation Process of TiH2 in Al Foams

    Get PDF
    The study of the dehydrogenation process of TiH2 in aluminum foams produced by the powder metallurgy technique is essential to understanding its foaming behavior. Tin was added to the Al foam to modify the dehydrogenation process and stabilize the foam. A gradual decomposition and more retention of hydrogen gas can be achieved with Sn addition resulting in a gradual and larger expansion of the foam

    Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy

    Full text link
    We review HB stars in a broad astrophysical context, including both variable and non-variable stars. A reassessment of the Oosterhoff dichotomy is presented, which provides unprecedented detail regarding its origin and systematics. We show that the Oosterhoff dichotomy and the distribution of globular clusters (GCs) in the HB morphology-metallicity plane both exclude, with high statistical significance, the possibility that the Galactic halo may have formed from the accretion of dwarf galaxies resembling present-day Milky Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the second-parameter problem is presented. A technique is proposed to estimate the HB types of extragalactic GCs on the basis of integrated far-UV photometry. The relationship between the absolute V magnitude of the HB at the RR Lyrae level and metallicity, as obtained on the basis of trigonometric parallax measurements for the star RR Lyrae, is also revisited, giving a distance modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are studied. Finally, the conductive opacities used in evolutionary calculations of low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and Space Scienc

    On the Inverse Scattering Method for Integrable PDEs on a Star Graph

    Get PDF
    © 2015, Springer-Verlag Berlin Heidelberg. We present a framework to solve the open problem of formulating the inverse scattering method (ISM) for an integrable PDE on a star-graph. The idea is to map the problem on the graph to a matrix initial-boundary value (IBV) problem and then to extend the unified method of Fokas to such a matrix IBV problem. The nonlinear Schrödinger equation is chosen to illustrate the method. The framework unifies all previously known examples which are recovered as particular cases. The case of general Robin conditions at the vertex is discussed: the notion of linearizable initial-boundary conditions is introduced. For such conditions, the method is shown to be as efficient as the ISM on the full-line

    Dark Matter Search with CUORE-0 and CUORE

    Get PDF
    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale experiment made of TeO2 bolometers that will probe the neutrinoless double beta decay of 130Te. Excellent energy resolution, low threshold and low background make CUORE sensitive to nuclear recoils, allowing a search for dark matter interactions. With a total mass of 741 kg of TeO2, CUORE can search for an annual modulation of the counting rate at low energies. We present data obtained with CUORE-like detectors and the prospects for a dark matter search in CUORE-0, a 40-kg prototype, and CUORE
    • …
    corecore