1,050 research outputs found

    Annual Report 2004

    Get PDF
    2004 annual report for Clean Clothes Campaign (CCC) providing an overview of its mission, organization profile, activities, social impact, and financial report

    Peanut Shell for Energy: Properties and Its Potential to Respect the Environment

    Get PDF
    The peanut (Arachys hypogaea) is a plant of the Fabaceae family (legumes), as are chickpeas, lentils, beans, and peas. It is originally from South America and is used mainly for culinary purposes, in confectionery products, or as a nut as well as for the production of biscuits, breads, sweets, cereals, and salads. Also, due to its high percentage of fat, peanuts are used for industrialized products such as oils, flours, inks, creams, lipsticks, etc. According to the Food and Agriculture Organization (FAO) statistical yearbook in 2016, the production of peanuts was 43,982,066 t, produced in 27,660,802 hectares. Peanuts are grown mainly in Asia, with a global production rate of 65.3%, followed by Africa with 26.2%, the Americas with 8.4%, and Oceania with 0.1%. The peanut industry is one of the main generators of agroindustrial waste (shells). This residual biomass (25–30% of the total weight) has a high energy content that is worth exploring. The main objectives of this study are, firstly, to evaluate the energy parameters of peanut shells as a possible solid biofuel applied as an energy source in residential and industrial heating installations. Secondly, different models are analysed to estimate the higher heating value (HHV) for biomass proposed by different scientists and to determine which most accurately fits the determination of this value for peanut shells. Thirdly, we evaluate the reduction in global CO2 emissions that would result from the use of peanut shells as biofuel. The obtained HHV of peanut shells (18.547 MJ/kg) is higher than other biomass sources evaluated, such as olive stones (17.884 MJ/kg) or almond shells (18.200 MJ/kg), and similar to other sources of biomass used at present for home and industrial heating applications. Different prediction models of the HHV value proposed by scientists for different types of biomass have been analysed and the one that best fits the calculation for the peanut shell has been determined. The CO2 reduction that would result from the use of peanut shells as an energy source has been evaluated in all production countries, obtaining values above 0.5 ‰ of their total emissions

    Stabilization of Polymeric Nanofibers Layers for Use as Real-Time and In-Flow Photonic Sensors

    Get PDF
    In order to increase the sensitivity of a sensor, the relationship between its volume and the surface available to be functionalized is of great importance. Accordingly, porous materials are becoming very relevant, because they have a notable surface-to-volume ratio. Moreover, they offer the possibility to infiltrate the target substances on them. Among other porous structures, polymeric nanofibers (NFs) layers fabricated by electrospinning have emerged as a very promising alternative to low-cost and easy-to-produce high-performance photonic sensors. However, experimental results show a spectrum drift when performing sensing measurements in real-time. That drift is responsible for a significant error when trying to determine the refractive index variation for a target solution, and, because of that, for the detection of the presence of certain analytes. In order to avoid that problem, different chemical and thermal treatments were studied. The best results were obtained for thermal steps at 190 °C during times between 3 and 5 h. As a result, spectrum drifts lower than 5 pm/min and sensitivities of 518 nm/refractive index unit (RIU) in the visible range of the spectrum were achieved in different electrospun NFs sensors.This work was supported by the Spanish government through the project TEC2015-63838-C3-1-ROPTONANOSENS and from the Basque government through the project KK-2019/00101 -µ4INDUSTR

    Novel Antibacterial and Toughened Carbon-Fibre/Epoxy Composites by the Incorporation of TiO2 Nanoparticles Modified Electrospun Nanofibre Veils

    Get PDF
    The inclusion of electrospun nanofiber veils was revealed as an effective method for enhancing the mechanical properties of fiber-reinforced epoxy resin composites. These veils will eventually allow the incorporation of nanomaterials not only for mechanical reinforcement but also in multifunctional applications. Therefore, this paper investigates the effect of electrospun nanofibrous veils made of polyamide 6 modified with TiO2 nanoparticles on the mechanical properties of a carbon-fiber/epoxy composite. The nanofibers were included in the carbon-fiber/epoxy composite as a single structure. The effect of positioning these veils in different composite positions was investigated. Compared to the reference, the use of unmodified and TiO2 modified veils increased the flexural stress at failure and the fracture toughness of composites. When TiO2 modified veils were incorporated, new antibacterial properties were achieved due to the photocatalytic properties of the veils, widening the application area of these composites.This research is funded by the ELKARTEK Programme, “ACTIMAT”, grupos de investigación del sistema universitario vasco (IT718-13), the Spanish government through the project TEC2015-63838-C3-1-R-OPTONANOSENS and from the Basque government through the project KK-2017/00089-µ4F

    Effect of laboratory heat stress on mortality and web mass of the common house spider, Parasteatoda tepidariorum (Koch 1841) (Araneae: Theridiidae)

    Get PDF
    We determined the effects of chronic heat stress on web construction of Parasteatoda tepidariorum (Araneae: Theridiidae) by measuring the survival and web mass of specimens after a 48-h period within a temperature chamber at 21, 30, 35, 40, or 50°C. The 21, 30 and 35°C treatments had the highest mean survival rate (100%), the 50°C treatment had the lowest (0%), and the 40°C treatment was intermediate (58%). The 21, 30, and 35°C treatments had the highest mean web mass, and the 40 and 50°C treatments had the lowest. Web mass did not correlate with spider mass for specimens across all temperature treatments. While acclimation temperature and humidity fluctuated throughout the 3 weeks of the study, neither variable affected web mass. This study demonstrates the sublethal effect of temperature on web construction, an effect that would ultimately be lethal in nature if a spider was unable to construct its web

    Boston University Chamber Chorus, Saturday, November 18, 2000

    Full text link
    This is the concert program of the Boston University Chamber Chorus performance on Saturday, November 18, 2000 at 8:00 p.m., at the Boston University Concert Hall, 855 Commonwealth Avenue, Boston, Massachusetts. Works performed were Spanisches Liederspie, Op 74 (von Geibel) by Robert Schumann, and from Six Elizabethan Songs and I Hate and I Love by Dominick Argento. Digitization for Boston University Concert Programs was supported by the Boston University Humanities Library Endowed Fund

    PTOMSM: A modified version of Topological Overlap Measure used for predicting Protein-Protein Interaction Network

    Get PDF
    A variety of methods are developed to integrating diverse biological data to predict novel interaction relationship between proteins. However, traditional integration can only generate protein interaction pairs within existing relationships. Therefore, we propose a modified version of Topological Overlap Measure to identify not only extant direct PPIs links, but also novel protein interactions that can be indirectly inferred from various relationships between proteins. Our method is more powerful than a naïve Bayesian-network-based integration in PPI prediction, and could generate more reliable candidate PPIs. Furthermore, we examined the influence of the sizes of training and test datasets on prediction, and further demonstrated the effectiveness of PTOMSM in predicting PPI. More importantly, this method can be extended naturally to predict other types of biological networks, and may be combined with Bayesian method to further improve the prediction

    Versatile Cold Atom Source for Multi-Species Experiments

    Get PDF
    We present a dual-species oven and Zeeman slower setup capable of producing slow, high-flux atomic beams for loading magneto-optical traps. Our compact and versatile system is based on electronic switching between different magnetic field profiles and is applicable to a wide range of multi-species experiments. We give details of the vacuum setup, coils and simple electronic circuitry. In addition, we demonstrate the performance of our system by optimized, sequential loading of magneto-optical traps of lithium-6 and cesium-133.Comment: 7 pages, 10 figure
    corecore