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Abstract: In order to increase the sensitivity of a sensor, the relationship between its volume and
the surface available to be functionalized is of great importance. Accordingly, porous materials are
becoming very relevant, because they have a notable surface-to-volume ratio. Moreover, they offer
the possibility to infiltrate the target substances on them. Among other porous structures, polymeric
nanofibers (NFs) layers fabricated by electrospinning have emerged as a very promising alternative
to low-cost and easy-to-produce high-performance photonic sensors. However, experimental results
show a spectrum drift when performing sensing measurements in real-time. That drift is responsible
for a significant error when trying to determine the refractive index variation for a target solution,
and, because of that, for the detection of the presence of certain analytes. In order to avoid that
problem, different chemical and thermal treatments were studied. The best results were obtained
for thermal steps at 190 ◦C during times between 3 and 5 h. As a result, spectrum drifts lower than
5 pm/min and sensitivities of 518 nm/refractive index unit (RIU) in the visible range of the spectrum
were achieved in different electrospun NFs sensors.
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1. Introduction

In the race to provide high-sensitivity sensors with a reduced response time and price, photonics
is becoming a notable option to be taken into account. In this respect, the use of optical sensors
provides important advantages compared to other technologies, including a small size, a light
weight, high sensitivity, a shorter time-to-result, label-free detection, a requirement for very low
volumes of sample and reagents, resistance to hazardous and harsh environments, and immunity to
electromagnetic interference [1]. Because of that, photonic sensors have been designed and developed
for the detection of substances/analytes in many laboratories and industrial environments, such as
clinical diagnosis, pharmaceutical and drug analysis, chemical and biological warfare agent detection,
pollution monitoring, and food control [2–6]. In some photonic sensors, we can distinguish between the
guiding and the sensing (external) media. In these sensors, the sensing measurement is based on the
interaction of the evanescent part of a guided mode with the sensing medium. For this reason, a change
in the sensing medium leads to a variation of the evanescent field properties, which are translated
into a change of the effective refractive index [7,8]. Nevertheless, only the lower-intensity evanescent
field propagating outside the optical structure is used for sensing purposes, which notably limits the
sensitivity of this kind of sensor. In order to overcome this restriction, and to use the higher-intensity
optical field located inside the structure for sensing purposes, porous materials are being extensively
studied for the development of optical sensing structures [9–11]. Porous materials provide extremely
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high surface areas within small volumes, where a huge amount of biorecognition elements can be
immobilized, thus implying an enhancement of the sensitivity of the optical sensor.

However, the active surface area can be restricted due to insufficient liquid diffusion inside the
porous structure because of small pore diameters and/or the impossibility to evacuate the air that
was initially filling the pores [11]. In order to overcome this limitation, polymeric nanofibers (NFs)
layers fabricated by electrospinning are emerging as a very promising alternative to low-cost and
easy-to-produce high-performance optical sensors. Polymeric NFs layers exhibit many interesting
properties that make them ideal candidates to build optical sensing structures, such as a high
surface-to-volume ratio, a high porosity, an adjustable pore size, a sponge-like configuration for a
better sample infiltration, a low production cost, and the possibility to be manufactured over large
areas [12,13]. High sensitivities (close to 1060 nm/RIU (refractive index unit) in the near-infrared range
of the spectrum) have been previously demonstrated by our group in a static test consisting of the
deposition of a drop of acetone over the porous NFs sample [14]. However, a spectrum drift has been
observed when trying to perform real-time sensing measurements. In this work, we studied different
chemical and thermal procedures for the structural stabilization of the NFs layer in order to overcome
this problem. As a result, almost zero spectrum drift (<5 pm/min) was achieved during real-time
and in-flow sensing tests. Sensitivities of 518 nm/RIU were achieved when using different stabilized
samples, thus confirming the possibilities of this new type of porous photonic structure to perform
sensing measurements.

2. Optical Sensors Based on Electrospun Nanofibers Layers

Porous optical sensors were built from polymeric NFs layers fabricated by electrospinning. These
layers have been deposited over a polished silicon wafer, and act like a Fabry–Pérot (FP) interferometer.
NFs layers with average diameters between 22 and 40 nm and high porosities were achieved with an
electrospinning solution, realized with 6 wt% polyamide 6 (PA6) and 5 wt% pyridine salt. Further
details about the fabrication process of these samples can be found in [14]. Then, a thin (~3 nm) gold
layer was deposited on top of the NFs layers in order to increase the amplitude of the FP fringes when
measuring in aqueous medium. Their microstructural characterization was performed by a Field
Emission Scanning Electron Microscope (FESEM) (Zeiss Ultra 55) as shown in Figure 1.
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Figure 1. FESEM images of a typical nanofibers (NFs) layer used in this study. Two different
magnifications have been used: (a) 10K (scale bar 1 µm); and (b) 100K (scale bar 100 nm).

The FP interferometer was selected from all possible configurations due to the good relationship
between fabrication complexity, cost, and sensitivity [15]. According to Figure 2a, this type of optical
sensing structure has a reflectance spectrum that is characterized by the presence of interference
fringes as a result of the constructive and destructive interferences produced by the light reflected at
the interfaces between the FP layer and the upper/lower substrates. Figure 2b shows the reflectance
spectrum in the visible region of a typical FP NFs layer fabricated using the above-described process.
The spectrum was measured using a VIS-NIR spectrometer from Ocean Optics, model Flame T.
The wavelength range for reflectance measurements was from 500 to 900 nm, with a resolution of
215 pm. Five consecutive spectra were measured every 2 ms, and then averaged to provide the final
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result. The Transfer Matrix Method (TMM) [16] was used to estimate the effective refractive index
and the thickness of the porous samples from those reflectance measurements. Average values in the
ranges 1.18–1.25 and 1190–1360 nm were obtained for these two parameters in different NFs layers.
Thicknesses have been confirmed with experimental measurements carried out with a Veeco Dektak
150 surface profilometer.
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Figure 2. (a) Schematic diagram of a Fabry–Pérot (FP) NFs interferometer. (b) Reflectance spectrum of
a polyamide 6 (PA6) NFs layer with a thin (~3 nm) gold layer deposited on top.

3. Experimental Setup and Initial Tests

Figure 3 shows a scheme of the opto-fluidic setup used to perform the sensing experiments, using
the FP NFs sensing layers in real-time. The NFs layer to be characterized was placed between two
transparent methacrylate pieces. In order to flow different solutions over the sensor, a 1 cm2 adhesive
tape with a 0.3 × 2.0 × 7.0 mm (height × width × length) channel defined on its center was fixed to
the upper methacrylate piece. Fluids were introduced to and extracted from the channel through the
fluidic tubes connected to the solution to be analyzed in one side, and to a syringe pump on the other
side. The pump was configured in withdraw mode, in order to generate the vacuum necessary to
suck the solutions from the vial located at the end of the microfluidic system. The pump was set to a
constant flow rate of 20 µL/min during the whole experiment. Two different VIS-NIR optical fibers
with a core of 400 µm were used to transmit the light from the light source to the sensing channel,
and the reflected light to the spectrometer, respectively. These optical fibers were placed in the arms
of a homemade goniometer. It allows for the use of different collimating lenses in each optical fiber,
improving the spatial resolution of our setup. The angle selected for each arm was 15◦ with respect to
the perpendicular axis of the NFs layer. The VIS-NIR spectrometer from Ocean Optics indicated in the
previous section was used to collect the sample’s reflectance in real time.
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Figure 3. (a) Scheme of the opto-fluidic setup used to carry out the sensing experiments in real-time.
(b) Sketch of the sensing region.
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The reflectance spectrum of the FP NFs structure will shift to longer wavelengths depending on
the refractive index increase of the fluids filling the porous structure. However, it was found that
a spectrum shift is produced during the continuous flow of a given fluid, when no refractive index
variations are produced in the sensor. As can be observed in Figure 4, the spectrum measured while
flowing deionized water (DIW) over the FP NFs layer suffers a significant shift (~1.5 nm) after a
10-min period. As can also be observed, this shift is linear with time, indicating a drift in the range of
150 pm/min.
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Figure 4. (a) Reflectance spectrum of a reference PA6 NFs layer when flowing deionized water (DIW)
at two different moments of our sensing test. (b) Temporal evolution of the spectrum shift measured
for the NFs layer in real-time, when changing from air to DIW flow. (c) Relative spectrum drift when
flowing DIW between minutes 20 and 30. The peak considered to track the sensor response in (b,c) is
located around 590 nm.

As the refractive index of the medium filling the structure did not change, the observed drift should
come from structural changes in the NFs layer itself. In this respect, Figure 5 shows a profilometer
measurement of an NFs layer after a test flowing DIW for 6 h. It can be clearly observed that the
thickness of the NFs layer has increased in the channel region with respect to the region where DIW
did not flow.
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Therefore, in order to improve the structural stability of NFs layers (with a minimum variation in
their porosity), and thus to reduce that drift, different chemical and thermal processes were carried out.
At least two NFs layers were used in each process. The most relevant results are displayed below.

4. Enhancement of the Structural Properties of NFs Layers with Chemical Treatments

4.1. Solvent Vapor Treatment

Solvent vapor treatment consists of exposing the nonwoven net of NFs to the vapor of the solvent
used for its deposition, with the objective of welding the contact points of the NFs. The vapor melts
these areas and allows them to fuse, which ultimately provides an improvement in the structural
stability without varying the NFs layer’s structure [17].

In order to apply the solvent vapor treatment to the PA6 NFs, 25 µL of pure acetic acid was placed
in a vial, which was covered by placing the sample face down. It was kept at room temperature for
15, 30, 45, or 60 min. Afterwards, samples were removed from the top of the vial and kept at room
temperature in order to remove possible traces of acetic acid vapor on them. No important variations
in the reflectance or in the layer thickness were found in any case. The average NFs diameter was
obtained from FESEM images, observing that the diameter was slightly reduced from around 33 nm
for the reference samples to around 31 nm.

Samples exposed for 60 min were used to perform sensing measurements in real-time. An average
spectrum drift close to 120 pm/min was obtained during the test measurement with flowing DIW. This
value was only slightly lower than the one obtained for the reference samples, which implies that some
NFs were being fixed between them, improving the structural stability. However, that improvement
was not enough to avoid the spectrum drift during a sensing measurement.

4.2. Hydrolysis and Chemical Crosslinking of Nanofibers

The chemical formula of PA6 is (C6H11NO)n. Its structure is shown in Figure 6, with the repeating
unit in the brackets [18].
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Figure 6. The chemical structure of PA6.

PA6 is built from monomeric units bound by peptide bonds that can be hydrolyzed. This reaction
results in the exposure of carboxyl and amino groups, which are able to react and form new peptide
bonds if they are correctly activated [19]. This strategy is normally used in order to bind proteins
or any other biomolecule to the surface of PA6 supports [20]. However, in our approach, we aimed
at crosslinking the NFs at the contact points by crosslinking carboxyl and amine groups exposed
at such regions after hydrolyzing the NFs. For this aim, we have employed glutaraldehyde as a
crosslinking agent.

Hydrolysis ought to be well-controlled in order to hydrolyze only some peptide bonds of the NFs
and avoid a loss of their stability. For this reason, we exposed the NFs to hydrochloric acid (HCl) vapor
for 15 min. Immediately after, we rinsed them with deionized water, and dried them with a soft airflow.
Then, we immersed the NFs in 2.5% glutaraldehyde and 1x phosphate buffered saline (PBS) for 30 min
and, after this time, we rinsed the samples with 1x PBS and dried them with a soft airflow. As a result,
the layer thickness was reduced by around 35%, and the average diameter increased from around
33 nm to around 39 nm. According to Figure 7, it seems that the NFs layer was partially dissolved,
giving a reduction in its porosity.
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Different sensing measurements were done in real-time using these NFs samples. The spectrum
drift was reduced to around 80 pm/min during the test measurement with flowing DIW, which is still
high for our purpose. Moreover, due to the reduction in the layer’s thickness and porosity, this method
was discarded to improve the structural stability of photonic sensors based on NFs layers.

As a summary of both chemical treatments studied in this section, Table 1 shows the most
important achieved results.

Table 1. Crosslinking conditions and morphological evaluation of NFs layers after the
chemical treatments.

NFs Layers
Group

Crosslinking
Conditions Exposure Time Average NFs

Diameter (nm)
NFs Layer

Thickness Variation
Spectrum

Drift (pm/min)

REF — — ~33 — ~150

A Acetic Acid
vapor 1 h ~31 ~0% ~120

B HCl +
glutaraldehyde

15′ HCl + 30′ 2.5%
glutaraldehyde ~39 ~−35% ~80

5. Enhancement of the Structural Properties of NFs Layers with Thermal Processes

Different thermal treatments were done in order to improve the structural stability of PA6 NFs
layers. As a starting point, a differential scanning calorimetry (DSC) analysis was done in order to
know the melting temperature of our PA6 NFs layer. DSC is a thermal analysis apparatus that measures
how the physical properties of a sample change, along with temperature against time [21]. It was
performed to demonstrate thermal effects of the materials whose melting behavior was analyzed
systematically. Figure 8 shows the result achieved in one of our PA6 NFs layers. The DSC plot shows a
decrease in heat flows at a temperature close to 90 ◦C, which is associated with an imperfect or a very
small crystalline nucleus with a low fusion energy. Moreover, there is a notable endothermic peak at
temperatures close to 225 ◦C due to the melting of the NFs layer.
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Figure 8. Differential scanning calorimetry (DSC) thermogram of a reference PA6 NFs layer used in our
sensing tests.

Our objective was to melt the NFs layer lightly, allowing NFs to be fixed between them. Because
of that, and taking into account the DSC results, five different furnace treatments were done with
temperatures between 180 ◦C and 200 ◦C (lower than the melting one), and times between one and
five hours. A chamber furnace from Selecta Group, model 210, was used to this end. A pressure of
~500 gr/cm2 was applied on the samples, placing a glass slide to protect the NFs layer and the weight
on them. Table 2 shows a summary of the most important achieved results.

Table 2. Crosslinking conditions and morphological evaluation of NFs layers after the
thermal treatments.

NFs Layers
Group

Crosslinking
Conditions Exposure Time Average NFs

Diameter (nm)
NFs Layer

Thickness Variation
Spectrum

Drift (pm/min)

REF — — ~33 — ~150
C 200 ◦C 5 h Melted layer ~−45% Melted layer
D 180 ◦C 5 h ~36 ~−15% ~30
E 190 ◦C 5 h ~43 ~−25% ~5
F 190 ◦C 3 h ~41 ~−20% ~8
G 190 ◦C 1 h ~38 ~−15% ~20

In the first heat treatment carried out, the temperature and time selected were 200 ◦C and five hours,
respectively. There was no spectrum shift during the sensing measurement in real-time. An FESEM
image (Figure 9a) confirms that the NFs layer has been partially melted, and, because of that, the liquid
cannot be introduced into the NFs structure. The best results were obtained for thermal treatments at
190 ◦C during three and five hours. Figure 9b shows an FESEM image of a sample heated for three
hours, where it can be observed that NFs are starting to be melted. Hence, a temperature of 190 ◦C for
three hours was used for welding the NFs layers.
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Figure 9. FESEM images of NFs layers after a heat treatment at (a) 200 ◦C for five hours and (b) 190 ◦C
for three hours.

In this respect, Figure 10a shows the spectrum shift when flowing DIW in real-time and Figure 10b
compares the drift obtained in this case with the one of the reference NFs layer, without any thermal
treatment. As has been indicated in Table 2, the spectrum drift was reduced to almost zero after
applying this thermal treatment.
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Figure 10. (a) Temporal evolution of the spectrum shift when flowing DIW in real-time for a PA6 NFs
layer, after a heat treatment at 190 ◦C for three hours. (b) Comparison of the relative spectrum drift
when flowing DIW, between minutes 20 and 30, for the reference sample and the one heated at 190 ◦C
for three hours.

6. Sensing Tests

Taking the previous results into account, three NFs layers with average thicknesses between
1190 and 1360 nm and effective refractive indices between 1.18 and 1.25 were prepared with the
abovementioned thermal process at 190 ◦C for 3 h. Afterwards, real-time sensing measurements were
carried out. Different concentrations of ethanol between 2.5% and 0.1% were selected. Their refractive
indices were obtained from [22].

During the real-time sensing measurement, the spectra were captured with a period of four
seconds for the initial cycle with DIW and 2.5% EtOH, and with a period of one second in the following
cycles. Figure 11 shows the temporal evolution of the spectrum shift of one of the NFs layers, as well
as the sensitivity curve determined from the spectral shifts that were experimentally observed on three
different sensing tests with three different NFs layers.
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Figure 11. (a) Temporal evolution of the spectrum shift measured for a PA6 NFs sensing layer in
real-time. (b) Sensitivity curve of three different sensing tests realized with different NFs layers.

The average sensitivity achieved was close to 518 nm/RIU in the visible range of the spectrum.
Moreover, sensing measurements were carried out with a spectrum drift lower than 5 pm/min.

7. Conclusions

In this work, we have demonstrated that a PA6 NFs layer is an interesting alternative as a porous
photonic sensor, due to its low cost, high porosity, the possibility to be manufactured in large areas, its
sponge-like structure for better sample infiltration, its high sensitivity, and the option to be used in the
visible range of the spectrum, which provides the possibility to use low-cost characterization tools.
However, the performance of this type of optical structure for real-time and in-flow measurements is
limited by the significant spectral drift experienced during the realization of these experiments (around
150 pm/min). This spectral drift is provoked by the limited structural stability of the NFs net created
during the electrospinning process.

In order to solve this structural instability issue, we have tested different conditioning processes.
When using chemically based approaches, such as those based on the treatment with solvent vapor or
the hydrolysis and chemical crosslinking, some reduction of the spectral drift was achieved, but it was
still noticeable. On the other hand, the application of a treatment based on increasing the temperature
to a value close to the melting point of the PA6 NFs, while applying pressure to the layer, has allowed
us to reduce the spectral drift to almost zero by properly selecting the treatment conditions.

We were able to perform real-time and in-flow refractive index sensing experiments using several
NFs layers that were treated using the selected conditioning process, with very repeatable results.
From the obtained results, we have determined an experimental sensitivity of 518 nm/RIU for the NFs
sensors that were developed in this work.
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