140 research outputs found
Lycium hantamense (Solanaceae), a new species from the Hantam–Roggeveld Centre of Plant Endemism, South Africa
AbstractLycium hantamense, a new species is described. This species was discovered in the Hantam–Roggeveld Centre of Plant Endemism of the Succulent Karoo Region, South Africa. L. hantamense belongs to a unique group of seven polyploid, functionally dioecious species in a genus of normally diploid, hermaphrodite species. This new species resembles L. strandveldense most closely
Lycium strandveldense (Solanaceae), a new species from the western coast of South Africa
A new species, L. strandveldense, from the western coastal region of the Western and Northern Cape Provinces, is described and figured. L. strandveldense, which is functionally dioecious, resembles the bisexual L. afrum L., a species also found along the western coast. Because of the near similarity in leaf and floral characteristics, specimens of L. strandveldense have in the past been regarded as atypical forms of L. afrum. This new species is distinguished by its functionally dioecious habit, relatively short, narrowly oblong, bright green leaves instead of the long, linear, glaucous leaves of L. afrum, corolla dark purple instead of claret coloured, corolla tube shorter than in L. afrum, stamens of the male flowers slightly exserted from corolla mouth in contrast to the included stamens of L. afrum, and finally a smaller ellipsoid red berry instead of the large spherical black berry of L. afrum
Investigation the effect of porosity on corrosion resistance and hardness of wc-co coatings on metal substrates
Abstract: Porosity is an important coating feature which strongly influences coating properties. Porosity creates poor coating cohesion and allows for higher corrosion rate and wear, and is generally associated with a higher number of unmelted or solidified particle that become trapped in the coating [1]. This investigation was conducted to investigate the effect of porosity on the hardness and corrosion resistance of WC-17Co coating on metal substrates. Coating of about 200ÎĽm were successful deposited by HVOF techniques unto four metal substrates, namely brass, 304L stainless steel, super-invar and aluminium. The corrosion behaviour was examined in chloride medium using direct current (DC) polarization test. The Vickers hardness was undertaken at loads of 5 kg for 10 s. The microstructures of the coatings were studied before and after the corrosion tests by scanning electron microscopy with EDX. The results indicated a strong correlation between porosity and corrosion rate, as well as hardness of the WC-17Co coatings
Material characteristics of Ti-6AL-4V samples additively manufactured using laser-based direct energy deposition
Although additive manufacturing is fast gaining traction in the industrial world as a reputable manufacturing technique to complement traditional mechanical machining, it still has problems such as porosity and residual stresses in components that give rise to cracking, distortion, and delamination, which are important issues to resolve in structural load-bearing applications. This research project focused on the characterization of the evolution of residual stresses in Ti-6Al-4V extra-low interstitial (ELI) additive-manufactured test samples. Four square thin-walled tubular samples were deposited on the same baseplate, using the direct energy deposition laser printing process, to different build heights. The residual stresses were analysed in the as-printed condition by the neutron diffraction technique and correlated to qualitative predictions obtained using the ANSYS software suite. Good qualitative agreement between the stress measurements and predictions were observed. Both approaches revealed the existence of large tensile stresses along the laser track direction at the sections that were built last, i.e., centre of the top layers of the samples. This in addition leads to large tensile stresses at the outer edges (corners) which would have the effect of separating the samples from the baseplate should the stresses exceed the yield strength of the material. Such extreme conditions did not occur in this study, but the stresses did lead to significant distortion of the baseplate. In general, the microstructures and spatial elemental mapping revealed a strong correlation between the macro-segregation of elemental V and the distribution of the β-phase in the printed parts.http://www.saimm.co.za/journal-papersam2024Materials Science and Metallurgical EngineeringSDG-09: Industry, innovation and infrastructur
Discovery of the Binary Pulsar PSR B1259-63 in Very-High-Energy Gamma Rays around Periastron with H.E.S.S
We report the discovery of very-high-energy (VHE) gamma-ray emission of the
binary system PSR B1259-63/SS 2883 of a radio pulsar orbiting a massive,
luminous Be star in a highly eccentric orbit. The observations around the 2004
periastron passage of the pulsar were performed with the four 13 m Cherenkov
telescopes of the H.E.S.S. experiment, recently installed in Namibia and in
full operation since December 2003. Between February and June 2004, a gamma-ray
signal from the binary system was detected with a total significance above 13
sigma. The flux was found to vary significantly on timescales of days which
makes PSR B1259-63 the first variable galactic source of VHE gamma-rays
observed so far. Strong emission signals were observed in pre- and
post-periastron phases with a flux minimum around periastron, followed by a
gradual flux decrease in the months after. The measured time-averaged energy
spectrum above a mean threshold energy of 380 GeV can be fitted by a simple
power law F_0(E/1 TeV)^-Gamma with a photon index Gamma =
2.7+-0.2_stat+-0.2_sys and flux normalisation F_0 = (1.3+-0.1_stat+-0.3_sys)
10^-12 TeV^-1 cm^-2 s^-1. This detection of VHE gamma-rays provides unambiguous
evidence for particle acceleration to multi-TeV energies in the binary system.
In combination with coeval observations of the X-ray synchrotron emission by
the RXTE and INTEGRAL instruments, and assuming the VHE gamma-ray emission to
be produced by the inverse Compton mechanism, the magnetic field strength can
be directly estimated to be of the order of 1 G.Comment: 10 pages, 8 figures, accepted in Astronomy and Astrophysics on 2 June
2005, replace: document unchanged, replaced author field in astro-ph entry -
authors are all members of the H.E.S.S. collaboration and three additional
authors (99+3, see document
Fire and herbivory drive fungal and bacterial communities through distinct above- and belowground mechanisms
Fire and herbivory are important natural disturbances in grassy biomes. Both drivers are likely to influence belowgroundmicrobial
communities but no studies have unravelled the long-term impact of both fire and herbivory
on bacterial and fungal communities. We hypothesized that soil bacterial communities change through
disturbance-induced shifts in soil properties (e.g. pH, nutrients) while soil fungal communities change through
vegetation modification (biomass and species composition). To test these ideas, we characterised soil physicochemical
properties (pH, acidity, C, N, P and exchangeable cations content, texture, bulk density, moisture),
plant species richness and biomass,microbial biomass and bacterial and fungal community composition and diversity
(using 16S and ITS rRNA amplicon sequencing, respectively) in six long-term (18 to 70 years) ecological research sites in South African savanna and grassland ecosystems.We found that fire and herbivory regimes profoundly
modified soil physico-chemical properties, plant species richness and standing biomass. In all sites, an
increase in woody biomass (ranging from 12 to 50%) was observed when natural disturbances were excluded.
The intensity and direction of changes in soil properties were highly dependent on the topo-pedo-climatic context.
Overall, fire and herbivory shaped bacterial and fungal communities through distinct driving forces: edaphic
properties (including Mg, pH, Ca) for bacteria, and vegetation (herbaceous biomass and woody cover) for fungi.
Fire and herbivory explained on average 7.5 and 9.8% of the fungal community variability, respectively, compared
to 6.0 and 5.6% for bacteria. The relatively small changes inmicrobial communities due to natural disturbance is in
stark contrast to dramatic vegetation and edaphic changes and suggests that soilmicrobial communities, having
evolved with disturbance, are resistant to change. This represents both a buffer to short-term anthropogenicinduced
changes and a restoration challenge in the face of long-term changes.The National Research Foundation, South Africa and the Patterson Foundation via Conservation International, South Africa.http://www.elsevier.com/locate/scitotenvam2022BiochemistryGeneticsMicrobiology and Plant Patholog
Fire and herbivory drive fungal and bacterial communities through distinct above- and belowground mechanisms
Fire and herbivory are important natural disturbances in grassy biomes. Both drivers are likely to influence belowground microbial communities but no studies have unravelled the long-term impact of both fire and herbivory on bacterial and fungal communities. We hypothesized that soil bacterial communities change through disturbance-induced shifts in soil properties (e.g. pH, nutrients) while soil fungal communities change through vegetation modification (biomass and species composition). To test these ideas, we characterised soil physico-chemical properties (pH, acidity, C, N, P and exchangeable cations content, texture, bulk density, moisture), plant species richness and biomass, microbial biomass and bacterial and fungal community composition and diversity (using 16S and ITS rRNA amplicon sequencing, respectively) in six long-term (18 to 70 years) ecological research sites in South African savanna and grassland ecosystems. We found that fire and herbivory regimes profoundly modified soil physico-chemical properties, plant species richness and standing biomass. In all sites, an increase in woody biomass (ranging from 12 to 50%) was observed when natural disturbances were excluded. The intensity and direction of changes in soil properties were highly dependent on the topo-pedo-climatic context. Overall, fire and herbivory shaped bacterial and fungal communities through distinct driving forces: edaphic properties (including Mg, pH, Ca) for bacteria, and vegetation (herbaceous biomass and woody cover) for fungi. Fire and herbivory explained on average 7.5 and 9.8% of the fungal community variability, respectively, compared to 6.0 and 5.6% for bacteria. The relatively small changes in microbial communities due to natural disturbance is in stark contrast to dramatic vegetation and edaphic changes and suggests that soil microbial communities, having evolved with disturbance, are resistant to change. This represents both a buffer to short-term anthropogenic-induced changes and a restoration challenge in the face of long-term changes
A low level of extragalactic background light as revealed by big gamma-rays from blazars
The diffuse extragalactic background light consists of the sum of the starlight emitted by galaxies through the history of the Universe, and it could also have an important contribution from the 'first stars', which may have formed before galaxy formation began. Direct measurements are difficult and not yet conclusive, owing to the large uncertainties caused by the bright foreground emission associated with zodiacal light1. An alternative approach2, 3, 4, 5 is to study the absorption features imprinted on the -ray spectra of distant extragalactic objects by interactions of those photons with the background light photons6. Here we report the discovery of -ray emission from the blazars7 H 2356 - 309 and 1ES 1101 - 232, at redshifts z = 0.165 and z = 0.186, respectively. Their unexpectedly hard spectra provide an upper limit on the background light at optical/near-infrared wavelengths that appears to be very close to the lower limit given by the integrated light of resolved galaxies8. The background flux at these wavelengths accordingly seems to be strongly dominated by the direct starlight from galaxies, thus excluding a large contribution from other sources—in particular from the first stars formed9. This result also indicates that intergalactic space is more transparent to -rays than previously thought
Phylogenomic analysis of a 55.1 kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani Species Complex
Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-userÂżs needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option availabl
- …