25 research outputs found

    Comparing Arabidopsis receptor kinase and receptor protein-mediated immune signaling reveals BIK1-dependent differences

    Get PDF
    Pattern recognition receptors (PRRs) sense microbial patterns and activate innate immunity against attempted microbial invasions. The leucine‐rich repeat receptor kinases (LRR‐RK) FLS2 and EFR, and the LRR receptor protein (LRR‐RP) receptors RLP23 and RLP42, respectively, represent prototypical members of these two prominent and closely related PRR families. We conducted a survey of Arabidopsis thaliana immune signaling mediated by these receptors to address the question of commonalities and differences between LRR‐RK and LRR‐RP signaling. Quantitative differences in timing and amplitude were observed for several early immune responses, with RP‐mediated responses typically being slower and more prolonged than those mediated by RKs. Activation of RLP23, but not FLS2, induced the production of camalexin. Transcriptomic analysis revealed that RLP23‐regulated genes represent only a fraction of those genes differentially expressed upon FLS2 activation. Several positive and negative regulators of FLS2‐signaling play similar roles in RLP23 signaling. Intriguingly, the cytoplasmic receptor kinase BIK1, a positive regulator of RK signaling, acts as a negative regulator of RP‐type immune receptors in a manner dependent on BIK1 kinase activity. Our study unveiled unexpected differences in two closely related receptor systems and reports a new negative role of BIK1 in plant immunity

    Consideration of culture is vital if we are to achieve the Sustainable Development Goals

    Get PDF
    Integrating the social and natural sciences to effectively tackle the intertwined challenges represented by the Sustainable Development Goals (SDGs) has been advocated for years. However, the practice is challenging, especially with respect to the beliefs, morals, and practices of individuals and groups or, more succinctly put, culture, which, despite attracting growing awareness, remains understated in sustainability. Here, we examine how and to what extent cultural values are linked to the achievement of the SDGs. Synthesizing knowledge from more than 300 publications, we show that cultural traits are linked to the achievement of all 17 SDGs and 79% of SDG targets. Further, empirical understanding obtained from a panel data analysis highlights that cultural values explain as much as 26% of the variations in the SDG achievements, yet the links are strikingly divergent across cultural traits and indicators. Our findings imply the need to consider more cultural contexts and nuances in sustainability science communications and policy design and to develop new cross-disciplinary solutions to sustainability challenges.FWN – Publicaties zonder aanstelling Universiteit Leide

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.

    SNARE-RNAi results in higher terpene emission from ectopically expressed caryophyllene synthase in nicotiana benthamiana

    No full text
    Plants produce numerous terpenes and much effort has been dedicated to the identification and characterization of the terpene biosynthetic genes. However, little is known about how terpenes are transported within the cell and from the cell into the apoplast. To investigate a putative role of vesicle fusion in this process, we used Agrobacterium tumefaciens-mediated transient coexpression in Nicotiana benthamiana of an MtVAMP721e-RNAi construct (Vi) with either a caryophyllene synthase or a linalool synthase, respectively. Headspace analysis of the leaves showed that caryophyllene or linalool emission increased about five-fold when N. benthamiana VAMP72 function was blocked. RNA sequencing and protein ubiquitination analysis of the agroinfiltrated N. benthamiana leaf extracts suggested that increased terpene emissions may be attributed to proteasome malfunction based on three observations: leaves with TPS+Vi showed (1) a higher level of a DsRed marker protein, (2) a higher level of ubiquitinated proteins, and (3) coordinated induced expression of multiple proteasome genes, presumably caused by the lack of proteasome-mediated feedback regulation. However, caryophyllene or linalool did not inhibit proteasome-related protease activity in the in vitro assays. While the results are not conclusive for a role of vesicle fusion in terpene transport, they do show a strong interaction between inhibition of vesicle fusion and ectopic expression of certain terpenes. The results have potential applications in metabolic engineering

    Single-institution clinical experience using robust intensity modulated proton therapy in chordoma and chondrosarcoma of the mobile spine and sacrum: feasibility and need for plan adaptation

    No full text
    Background: Due to its specific physical characteristics, proton irradiation is especially suited for irradiation of chordomas and chondrosarcoma in the axial skeleton. Robust plan optimization renders the proton beam therapy more predictable upon individual setup errors. Reported experience with the planning and delivery of robustly optimized plans in chordoma and chondrosarcoma of the mobile spine and sacrum, is limited. In this study, we report on the clinical use of robustly optimized, intensity modulated proton beam therapy in these patients.Methods: We retrospectively reviewed patient, treatment and acute toxicity data of all patients with chordoma and chondrosarcoma of the mobile spine and sacrum, treated between 1 April 2019 and 1 April 2020 at our institute. Anatomy changes during treatment were evaluated by weekly cone-beam CTs (CBCT), supplemented by scheduled control-CTs or ad-hoc control-CTs. Acute toxicity was scored weekly during treatment and at 3 months after therapy according to CTCAE 4.0.Results: 17 chordoma and 3 chondrosarcoma patients were included. Coverage of the high dose clinical target volume was 99.8% (range 56.1-100%) in the nominal and 80.9% (range 14.3-99.6%) in the voxel-wise minimum dose distribution. Treatment plan adaptation was needed in 5 out of 22 (22.7%) plans. Reasons for plan adaptation were either reduced tumor coverage or increased dose to the OAR.Conclusions: Robustly optimized intensity modulated proton beam therapy for chordoma and chondrosarcoma of the mobile spine is feasible. Plan adaptations due to anatomical changes were required in approximately 23 percent of treatment courses. (C) 2021 The Authors. Published by Elsevier B.V.Orthopaedics, Trauma Surgery and Rehabilitatio

    Single-institution clinical experience using robust intensity modulated proton therapy in chordoma and chondrosarcoma of the mobile spine and sacrum: feasibility and need for plan adaptation

    No full text
    Background: Due to its specific physical characteristics, proton irradiation is especially suited for irradiation of chordomas and chondrosarcoma in the axial skeleton. Robust plan optimization renders the proton beam therapy more predictable upon individual setup errors. Reported experience with the planning and delivery of robustly optimized plans in chordoma and chondrosarcoma of the mobile spine and sacrum, is limited. In this study, we report on the clinical use of robustly optimized, intensity modulated proton beam therapy in these patients.Methods: We retrospectively reviewed patient, treatment and acute toxicity data of all patients with chordoma and chondrosarcoma of the mobile spine and sacrum, treated between 1 April 2019 and 1 April 2020 at our institute. Anatomy changes during treatment were evaluated by weekly cone-beam CTs (CBCT), supplemented by scheduled control-CTs or ad-hoc control-CTs. Acute toxicity was scored weekly during treatment and at 3 months after therapy according to CTCAE 4.0.Results: 17 chordoma and 3 chondrosarcoma patients were included. Coverage of the high dose clinical target volume was 99.8% (range 56.1-100%) in the nominal and 80.9% (range 14.3-99.6%) in the voxel-wise minimum dose distribution. Treatment plan adaptation was needed in 5 out of 22 (22.7%) plans. Reasons for plan adaptation were either reduced tumor coverage or increased dose to the OAR.Conclusions: Robustly optimized intensity modulated proton beam therapy for chordoma and chondrosarcoma of the mobile spine is feasible. Plan adaptations due to anatomical changes were required in approximately 23 percent of treatment courses. (C) 2021 The Authors. Published by Elsevier B.V

    Arthropoda: Decapoda

    No full text
    Decopod crustaceans are classified as an order of crustaceans in the phylum Arthropoda, class Malacostraca. Because decapod crustaceans are grossly, this chapter uses the lobster as the model in most discussions, and describes important anatomic differences that occur in other decapods. The lobster\u27s body is elongated and divided into a cephalothorax and an abdomen. The hard carapace that makes up most of the cephalothorax is further divided into head and thoracic regions by various indentations on the carapace. Underlying the carapace epithelium is the “spongy” hypodermis composed of large vacuolated cells (the glycogen contents are removed during histologic processing). The gastrointestinal tract of decapods is divided into the esophagus, foregut, midgut, hindgut, anterior and posterior ceca, and digestive gland. The excretory system of a decapod crustacean is the primary means of eliminating nitrogenous wastes and is composed of several parts: a coelomosac, a labyrinth, a bladder and bladder duct, a nephridiopore, and the surrounding hemosinus
    corecore