919 research outputs found

    Multi-User OFDM Based on Braided Convolutional Codes

    Get PDF
    Braided convolutional codes (BCCs) form a class of iteratively decodable convolutional codes that are constructed from component convolutional codes. In braided code division multiple access (BCDMA), these very efficient error correcting codes are combined with a multiple access method and inherent interleaving for channel diversity exploitation into one single scheme. In this paper, we describe the BCDMA principle and present simulation results for a frequency selective Rayleigh fading channel. Results for bit interleaved coded modulation (BICM) based on turbo and LDPC codes are also given for comparison

    Reduction and Emergence in Bose-Einstein Condensates

    Get PDF
    A closer look at some proposed Gedanken-experiments on BECs promises to shed light on several aspects of reduction and emergence in physics. These include the relations between classical descriptions and different quantum treatments of macroscopic systems, and the emergence of new properties and even new objects as a result of spontaneous symmetry breaking

    Phase resolution limit in macroscopic interference between Bose-Einstein condensates

    Full text link
    We study the competition between phase definition and quantum phase fluctuations in interference experiments between independently formed Bose condensates. While phase-sensitive detection of atoms makes the phase progressively better defined, interactions tend to randomize it faster as the uncertainty in the relative particle number grows. A steady state is reached when the two effects cancel each other. Then the phase resolution saturates to a value that grows with the ratio between the interaction strength and the atom detection rate, and the average phase and number begin to fluctuate classically. We discuss how our study applies to both recently performed and possible future experiments.Comment: 4 pages, 5 figure

    Nonlocal appearance of a macroscopic angular momentum

    Full text link
    We discuss a type of measurement in which a macroscopically large angular momentum (spin) is "created" nonlocally by the measurement of just a few atoms from a double Fock state. This procedure apparently leads to a blatant nonconservation of a macroscopic variable - the local angular momentum. We argue that while this gedankenexperiment provides a striking illustration of several counter-intuitive features of quantum mechanics, it does not imply a non-local violation of the conservation of angular momentum.Comment: 10 pages, 1 figur

    Hopping Conduction in Disordered Carbon Nanotubes

    Full text link
    We report electrical transport measurements on individual disordered carbon nanotubes, grown catalytically in a nanoporous anodic aluminum oxide template. In both as-grown and annealed types of nanotubes, the low-field conductance shows as exp[-(T_{0}/T)^{1/2}] dependence on temperature T, suggesting that hopping conduction is the dominant transport mechanism, albeit with different disorder-related coefficients T_{0}. The field dependence of low-temperature conductance behaves an exp[-(xi_{0}/xi)^{1/2}] with high electric field xi at sufficiently low T. Finally, both annealed and unannealed nanotubes exhibit weak positive magnetoresistance at low T = 1.7 K. Comparison with theory indicates that our data are best explained by Coulomb-gap variable range hopping conduction and permits the extraction of disorder-dependent localization length and dielectric constant.Comment: 10 pages, 5 figure

    Gastrostomies Preserve but do not Increase Quality of Life for Patients and Caregivers

    Get PDF
    BACKGROUND & AIMS: Gastrostomies are widely used to provide long-term enteral nutrition to patients with neurological conditions that affect swallowing (such as following a cerebrovascular accident or for patients with motor neuron disease) or with oropharyngeal malignancies. The benefits derived from this intervention are uncertain for patients and caregivers. We conducted a prospective, multicenter cohort study to determine how gastrostomies affect health-related quality of life (HRQoL) in recipients and caregivers. METHODS: We performed a study of 100 patients who received gastrostomies (55% percutaneous endoscopic gastrostomy, 45% radiologically inserted) at 5 centers in the United Kingdom, 100 caregivers, and 200 population controls. We used the EuroQol-5D (EQ-5D, comprising a questionnaire, index, visual analogue scale) to assess HRQoL for patients and caregivers before the gastrostomy insertion and then 3 months afterward; findings were compared with those from controls. Ten patients and 10 caregivers were also interviewed after the procedure to explore quantitative findings. Findings from the EQ-5D and semi-structured interviews were integrated using a mixed methods matrix. RESULTS: Six patients died before the 3-month HRQoL reassessments. We observed no significant longitudinal changes in mean EQ-5D index scores for patients (0.70 before vs 0.710 after; P=.83) or caregivers (0.95 before vs 0.95 after; P=.32) following gastrostomy insertion. The semi-structured interviews revealed problems in managing gastrostomy tubes, social isolation, and psychological and emotional consequences that reduced HRQoL. CONCLUSIONS: We performed a mixed methods prospective study of the effects of gastrostomy feeding on HRQoL. HRQoL did not significantly improve after gastrostomy insertion for patients or caregivers. The lack of significant decrease in HRQoL after the procedure indicates that gastrostomies may help maintain HRQoL. Findings have relevance to those involved in gastrostomy insertion decisions and indicate the importance of carefully selecting patients for this intervention, despite the relative ease of insertion

    Macroscopic Quantum Fluctuations in the Josephson Dynamics of Two Weakly Linked Bose-Einstein Condensates

    Full text link
    We study the quantum corrections to the Gross-Pitaevskii equation for two weakly linked Bose-Einstein condensates. The goals are: 1) to investigate dynamical regimes at the borderline between the classical and quantum behaviour of the bosonic field; 2) to search for new macroscopic quantum coherence phenomena not observable with other superfluid/superconducting systems. Quantum fluctuations renormalize the classical Josephson oscillation frequencies. Large amplitude phase oscillations are modulated, exhibiting collapses and revivals. We describe a new inter-well oscillation mode, with a vanishing (ensemble averaged) mean value of the observables, but with oscillating mean square fluctuations. Increasing the number of condensate atoms, we recover the classical Gross-Pitaevskii (Josephson) dynamics, without invoking the symmetry-breaking of the Gauge invariance.Comment: Submitte

    Non-destructive, dynamic detectors for Bose-Einstein condensates

    Full text link
    We propose and analyze a series of non-destructive, dynamic detectors for Bose-Einstein condensates based on photo-detectors operating at the shot noise limit. These detectors are compatible with real time feedback to the condensate. The signal to noise ratio of different detection schemes are compared subject to the constraint of minimal heating due to photon absorption and spontaneous emission. This constraint leads to different optimal operating points for interference-based schemes. We find the somewhat counter-intuitive result that without the presence of a cavity, interferometry causes as much destruction as absorption for optically thin clouds. For optically thick clouds, cavity-free interferometry is superior to absorption, but it still cannot be made arbitrarily non-destructive . We propose a cavity-based measurement of atomic density which can in principle be made arbitrarily non-destructive for a given signal to noise ratio

    The effect of adolescent inhalant abuse on energy balance and growth

    Get PDF
    The abuse of volatile solvents such as toluene is a significant public health concern, predominantly affecting adolescents. To date, inhalant abuse research has primarily focused on the central nervous system; however, inhalants also exert effects on other organ systems and processes, including metabolic function and energy balance. Adolescent inhalant abuse is characterized by a negative energy balance phenotype, with the peak period of abuse overlapping with the adolescent growth spurt. There are multiple components within the central and peripheral regulation of energy balance that may be affected by adolescent inhalant abuse, such as impaired metabolic signaling, decreased food intake, altered dietary preferences, disrupted glucose tolerance and insulin release, reduced adiposity and skeletal density, and adrenal hypertrophy. These effects may persist into abstinence and adulthood, and the long-term consequences of inhalant-induced metabolic dysfunction are currently unknown. The signs and symptoms resulting from chronic adolescent inhalant abuse may result in a propensity for the development of adult-onset metabolic disorders such as type 2 diabetes, however, further research investigating the long-term effects of inhalant abuse upon energy balance and metabolism are needed. This review addresses several aspects of the short- and long-term effects of inhalant abuse relating to energy and metabolic processes, including energy balance, intake and expenditure; dietary preferences and glycemic control; and the dysfunction of metabolic homeostasis through altered adipose tissue, bone, and hypothalamic-pituitary-adrenal axis function.Rose Crossin, Ashleigh Qama, Zane B. Andrews, Andrew J. Lawrence, Jhodie R. Dunca

    Energy band structure and intrinsic coherent properties in two weakly linked Bose Einstein Condensates

    Full text link
    The energy band structure and energy splitting due to quantum tunneling in two weakly linked Bose-Einstein condensates were calculated by using the instanton method. The intrinsic coherent properties of Bose Josephson junction were investigated in terms of energy splitting. For EC/EJ≪1E_{C}/E_{J}\ll 1, the energy splitting is small and the system is globally phase coherent. In the opposite limit, EC/EJ≫1E_{C}/E_{J}\gg 1, the energy splitting is large and the system becomes a phase dissipation. Our reslults suggest that one should investigate the coherence phenomna of BJJ in proper condition such as EC/EJ∼1E_{C}/E_{J}\sim 1.Comment: to appear in Phys. Rev. A, 2 figure
    • …
    corecore