We propose and analyze a series of non-destructive, dynamic detectors for
Bose-Einstein condensates based on photo-detectors operating at the shot noise
limit. These detectors are compatible with real time feedback to the
condensate. The signal to noise ratio of different detection schemes are
compared subject to the constraint of minimal heating due to photon absorption
and spontaneous emission. This constraint leads to different optimal operating
points for interference-based schemes. We find the somewhat counter-intuitive
result that without the presence of a cavity, interferometry causes as much
destruction as absorption for optically thin clouds. For optically thick
clouds, cavity-free interferometry is superior to absorption, but it still
cannot be made arbitrarily non-destructive . We propose a cavity-based
measurement of atomic density which can in principle be made arbitrarily
non-destructive for a given signal to noise ratio