51 research outputs found

    Adsorbate vibrational modes enhancement of radiative heat transfer and van der Waals friction

    Full text link
    We study the dependence of the heat transfer and the van der Waals friction between two semi-infinite solids on the dielectric properties of the bodies. We show that the heat transfer and van der Waals friction at short separation between the solids may increase by many orders of magnitude when the surfaces are covered by adsorbates, or can support low-frequency surface plasmons. In this case the heat transfer and van der Waals friction are determined by resonant photon tunneling between adsorbate vibrational modes, or surface plasmon modes. The enhancement of the van der Waals friction is especially large when in the adsorbed layer there is an acoustic branch for the vibrations parallel to the surface like in the case of Cs adsorption on Cu(100) surface. In this case we show that even for separation d=10d=10nm, the van der Waals friction induced by adsorbates can be so large that it can be measured with the present state-of-art equipment. The van an der Waals friction is characterized by a strong distance dependence (∌1/d6\sim 1/d^6), and at the small distances it can be much larger than \textit{the electrostatic} friction observed in \cite{Stipe}. \vskip 0.3cm \textit{Keywords}: non-contact friction, van der Waals friction, radiative heat transfer, atomic force microscope, adsorbate vibrational modeComment: published in Surface Scienc

    Heat to Electricity Conversion by a Graphene Stripe with Heavy Chiral Fermions

    Full text link
    A conversion of thermal energy into electricity is considered in the electrically polarized graphene stripes with zigzag edges where the heavy chiral fermion (HCF) states are formed. The stripes are characterized by a high electric conductance Ge and by a significant Seebeck coefficient S. The electric current in the stripes is induced due to a non-equilibrium thermal injection of "hot" electrons. This thermoelectric generation process might be utilized for building of thermoelectric generators with an exceptionally high figure of merit Z{\delta}T \simeq 100 >> 1 and with an appreciable electric power densities \sim 1 MW/cm2.Comment: 8 pages, 3 figure

    Effective Hamiltonian and unitarity of the S matrix

    Full text link
    The properties of open quantum systems are described well by an effective Hamiltonian H{\cal H} that consists of two parts: the Hamiltonian HH of the closed system with discrete eigenstates and the coupling matrix WW between discrete states and continuum. The eigenvalues of H{\cal H} determine the poles of the SS matrix. The coupling matrix elements W~kccâ€Č\tilde W_k^{cc'} between the eigenstates kk of H{\cal H} and the continuum may be very different from the coupling matrix elements Wkccâ€ČW_k^{cc'} between the eigenstates of HH and the continuum. Due to the unitarity of the SS matrix, the \TW_k^{cc'} depend on energy in a non-trivial manner, that conflicts with the assumptions of some approaches to reactions in the overlapping regime. Explicit expressions for the wave functions of the resonance states and for their phases in the neighbourhood of, respectively, avoided level crossings in the complex plane and double poles of the SS matrix are given.Comment: 17 pages, 7 figure

    The colour magnitude relation for galaxies in the Coma cluster

    Get PDF
    We present a new photometric catalogue of the Coma galaxy cluster in the Johnson U- and V- bands. We cover an area of 3360arcmin2 of sky, to a depth of V=20 mag in a 13 arcsec diameter aperture, and produce magnitudes for ~1400 extended objects in metric apertures from 8.8 to 26arcsec diameters. The mean internal RMS scatter in the photometry is 0.014 mag in V, and 0.026 mag in U, for V13 < 17 mag. We place new limits on the levels of scatter in the colour--magnitude relation (CMR) in the Coma cluster, and investigate how the slope and scatter of the CMR depends on galaxy morphology, luminosity and position within the cluster. As expected, the lowest levels of scatter are found in the elliptical galaxies, while the late type galaxies have the highest numbers of galaxies bluewards of the CMR. We investigate whether the slope of the CMR is an artifact of colour gradients within galaxies and, show that it persists when the colours are measured within a diameter that scales with galaxy size. Looking at the environmental dependence of the CMR, we find a trend of systematically bluer galaxy colours with increasing projected cluster-centric radius which we associate with a gradient in the mean galactic ages.Comment: 18 pages, 13 Figures. For associated data file, see ftp://ftp.sr.bham.ac.uk/pub/ale/ComaPhot

    Radiative Corrections to One-Photon Decays of Hydrogenic Ions

    Full text link
    Radiative corrections to the decay rate of n=2 states of hydrogenic ions are calculated. The transitions considered are the M1 decay of the 2s state to the ground state and the E1(M2) decays of the 2p1/22p_{1/2} and 2p3/22p_{3/2} states to the ground state. The radiative corrections start in order α(Zα)2\alpha (Z \alpha)^2, but the method used sums all orders of ZαZ\alpha. The leading α(Zα)2\alpha (Z\alpha)^2 correction for the E1 decays is calculated and compared with the exact result. The extension of the calculational method to parity nonconserving transitions in neutral atoms is discussed.Comment: 22 pages, 2 figure

    QCD Corrections to QED Vacuum Polarization

    Full text link
    We compute QCD corrections to QED calculations for vacuum polarization in background magnetic fields. Formally, the diagram for virtual eeˉe\bar{e} loops is identical to the one for virtual qqˉq\bar{q} loops. However due to confinement, or to the growth of αs\alpha_s as p2p^2 decreases, a direct calculation of the diagram is not allowed. At large p2p^2 we consider the virtual qqˉq\bar{q} diagram, in the intermediate region we discuss the role of the contribution of quark condensates \left and at the low-energy limit we consider the π0\pi^0, as well as charged pion π+π−\pi^+\pi^- loops. Although these effects seem to be out of the measurement accuracy of photon-photon laboratory experiments they may be relevant for Îł\gamma-ray burst propagation. In particular, for emissions from the center of the galaxy (8.5 kpc), we show that the mixing between the neutral pseudo-scalar pion π0\pi_0 and photons renders a deviation from the power-law spectrum in the TeVTeV range. As for scalar quark condensates \left and virtual qqˉq\bar{q} loops are relevant only for very high radiation density ∌300MeV/fm3\sim 300 MeV/fm^3 and very strong magnetic fields of order ∌1014T\sim 10^{14} T.Comment: 15 pages, 4 figures; Final versio

    EBIC-guidelines for management of severe head injury in adults

    Get PDF
    Guidelines for the management of severe head injury in adults as evolved by the European Brain Injury Consortium are presented and discussed. The importance of preventing and treating secondary insults is emphasized and the principles on which treatment is based are reviewed. Guidelines presented are of a pragmatic nature, based on consensus and expert opinion, covering the treatment from accident site to intensive care unit. Specific aspects pertaining to the conduct of clinical trials in head injury are highlighted. The adopted approach is further discussed in relation to other approaches to the development of guidelines, such as evidence based analysis

    The composition of the protosolar disk and the formation conditions for comets

    Get PDF
    Conditions in the protosolar nebula have left their mark in the composition of cometary volatiles, thought to be some of the most pristine material in the solar system. Cometary compositions represent the end point of processing that began in the parent molecular cloud core and continued through the collapse of that core to form the protosun and the solar nebula, and finally during the evolution of the solar nebula itself as the cometary bodies were accreting. Disentangling the effects of the various epochs on the final composition of a comet is complicated. But comets are not the only source of information about the solar nebula. Protostellar disks around young stars similar to the protosun provide a way of investigating the evolution of disks similar to the solar nebula while they are in the process of evolving to form their own solar systems. In this way we can learn about the physical and chemical conditions under which comets formed, and about the types of dynamical processing that shaped the solar system we see today. This paper summarizes some recent contributions to our understanding of both cometary volatiles and the composition, structure and evolution of protostellar disks.Comment: To appear in Space Science Reviews. The final publication is available at Springer via http://dx.doi.org/10.1007/s11214-015-0167-
    • 

    corecore