115 research outputs found
Protecting the past for the public good: archaeology and Australian heritage law
Archaeological remains have long been recognised as fragile evidence of the past, which require protection. Legal protection for archaeological heritage has existed in Australia for more than thirty years but there has been little analysis of the aims and effectiveness of that legislation by the archaeological profession. Much Australian heritage legislation was developed in a period where the dominant paradigm in archaeological theory and practice held that archaeology was an objective science. Australian legislative frameworks continue to strongly reflect this scientific paradigm and contemporary archaeological heritage management practice is in turn driven by these legislative requirements. This thesis examines whether archaeological heritage legislation is fulfilling its original intent. Analysis of legislative development in this thesis reveals that legislators viewed archaeological heritage as having a wide societal value, not solely or principally for the archaeological community. Archaeological heritage protection is considered within the broader philosophy of environmental conservation. As an environmental issue, it is suggested that a ‘public good’ conservation paradigm is closer to the original intent of archaeological heritage legislation, rather than the “scientific” paradigm which underlies much Australian legislation. Through investigation of the developmental history of Australian heritage legislation it is possible to observe how current practice has diverged from the original intent of the legislation, with New South Wales and Victoria serving as case studies. Further analysis is undertaken of the limited number of Australian court cases which have involved substantial archaeological issues to determine the court’s attitude to archaeological heritage protection. Situating archaeological heritage protective legislation within the field of environmental law allows the examination of alternate modes of protecting archaeological heritage and creates opportunities for ‘public good’ conservation outcomes. This shift of focus to ‘public good’ conservation as an alternative to narrowly-conceived scientific outcomes better aligns with current public policy directions including the sustainability principles, as they have developed in Australia, as well as indigenous rights of self-determination. The thesis suggests areas for legal reforms which direct future archaeological heritage management practice to consider the ‘public good’ values for archaeological heritage protection
Orbital Ordering in Paramagnetic LaMnO3 and KCuF3
{\it Ab-initio} studies of the stability of orbital ordering, its coupling to
magnetic structure and its possible origins (electron-phonon and/or
electron-electron interactions) are reported for two perovskite systems,
LaMnO and KCuF. We present a new Average Spin State (ASS) calculational
scheme that allowed us to treat a paramagnetic state. Using this scheme, we
succesfully described the experimental magnetic/orbital phase diagram of both
LaMnO and KCuF in crystal structures when the Jahn-Teller distortions
are neglected. Hence, we conclude that the orbital ordering in both compounds
is purely electronic in origin.Comment: 10 pages, 5 figure
Investigation of the Jahn-Teller Transition in TiF3 using Density Functional Theory
We use first principles density functional theory to calculate electronic and
magnetic properties of TiF3 using the full potential linearized augmented plane
wave method. The LDA approximation predicts a fully saturated ferromagnetic
metal and finds degenerate energy minima for high and low symmetry structures.
The experimentally observed Jahn-Teller phase transition at Tc=370K can not be
driven by the electron-phonon interaction alone, which is usually described
accurately by LDA.
Electron correlations beyond LDA are essential to lift the degeneracy of the
singly occupied Ti t2g orbital. Although the on-site Coulomb correlations are
important, the direction of the t2g-level splitting is determined by the
dipole-dipole interactions. The LDA+U functional predicts an aniferromagnetic
insulator with an orbitally ordered ground state. The input parameters U=8.1 eV
and J=0.9 eV for the Ti 3d orbital were found by varying the total charge on
the TiF ion using the molecular NRLMOL code. We estimate the
Heisenberg exchange constant for spin-1/2 on a cubic lattice to be
approximately 24 K. The symmetry lowering energy in LDA+U is about 900 K per
TiF3 formula unit.Comment: 7 pages, 9 figures, to appear in Phys. Rev.
First- principle calculations of magnetic interactions in correlated systems
We present a novel approach to calculate the effective exchange interaction
parameters based on the realistic electronic structure of correlated magnetic
crystals in local approach with the frequency dependent self energy. The analog
of ``local force theorem'' in the density functional theory is proven for
highly correlated systems. The expressions for effective exchange parameters,
Dzialoshinskii- Moriya interaction, and magnetic anisotropy are derived. The
first-principle calculations of magnetic excitation spectrum for ferromagnetic
iron, with the local correlation effects from the numerically exact QMC-scheme
is presented.Comment: 17 pages, 3 Postscript figure
Large Orbital Magnetic Moment and Coulomb Correlation effects in FeBr2
We have performed an all-electron fully relativistic density functional
calculation to study the magnetic properties of FeBr2. We show for the first
time that the correlation effect enhances the contribution from orbital degrees
of freedom of electrons to the total magnetic moment on Fe as
opposed to common notion of nearly total quenching of the orbital moment on
Fe site. The insulating nature of the system is correctly predicted when
the Hubbard parameter U is included. Energy bands around the gap are very
narrow in width and originate from the localized Fe-3 orbitals, which
indicates that FeBr2 is a typical example of the Mott insulator.Comment: 4 pages, 3 figures, revtex4, PRB accepte
Effect of local Coulomb interactions on the electronic structure and exchange interactions in Mn12 magnetic molecules
We have studied the effect of local Coulomb interactions on the electronic
structure of the molecular magnet Mn12-acetate within the LDA+U approach. The
account of the on-site repulsion results in a finite energy gap and an integer
value of the molecule's magnetic moment, both quantities being in a good
agreement with the experimental results. The resulting magnetic moments and
charge states of non-equivalent manganese ions agree very well with
experiments. The calculated values of the intramolecular exchange parameters
depend on the molecule's spin configuration, differing by 25-30% between the
ferrimagnetic ground state and the completely ferromagnetic configurations. The
values of the ground-state exchange coupling parameters are in reasonable
agreement with the recent data on the magnetization jumps in megagauss magnetic
fields. Simple estimates show that the obtained exchange parameters can be
applied, at least qualitatively, to the description of the spin excitations in
Mn12-acetate.Comment: RevTeX, LaTeX2e, 4 EPS figure
Importance of full Coulomb interactions for understanding the electronic structure of delta-Pu
Contains fulltext :
84373.pdf (preprint version ) (Open Access)5 p
Charge and Orbital Ordering and Spin State Transition Driven by Structural Distortion in YBaCo_2O_5
We have investigated electronic structures of antiferromagnetic YBaCo_2O_5
using the local spin-density approximation (LSDA) + U method. The charge and
orbital ordered insulating ground state is correctly obtained with the strong
on-site Coulomb interaction. Co^{2+} and Co^{3+} ions are found to be in the
high spin (HS) and intermediate spin (IS) state, respectively. It is considered
that the tetragonal to orthorhombic structural transition is responsible for
the ordering phenomena and the spin states of Co ions. The large contribution
of the orbital moment to the total magnetic moment indicates that the
spin-orbit coupling is also important in YBaCo_2O_5.Comment: 4 pages including 4 figures, Submitted to Phys. Rev. Let
Hubbard-U calculations for Cu from first-principles Wannier functions
We present first-principles calculations of optimally localized Wannier
functions for Cu and use these for an ab-initio determination of Hubbard
(Coulomb) matrix elements. We use a standard linearized muffin-tin orbital
calculation in the atomic-sphere approximation (LMTO-ASA) to calculate Bloch
functions, and from these determine maximally localized Wannier functions using
a method proposed by Marzari and Vanderbilt. The resulting functions were
highly localized, with greater than 89% of the norm of the function within the
central site for the occupied Wannier states. Two methods for calculating
Coulomb matrix elements from Wannier functions are presented and applied to fcc
Cu. For the unscreened on-site Hubbard for the Cu 3d-bands we have obtained
about 25eV. These results are also compared with results obtained from a
constrained local-density approximation (LDA) calculation.Comment: 13 pages, 8 figures, 5 table
Modeling the actinides with disordered local moments
A first-principles disordered local moment (DLM) picture within the
local-spin-density and coherent potential approximations (LSDA+CPA) of the
actinides is presented. The parameter free theory gives an accurate description
of bond lengths and bulk modulus. The case of -Pu is studied in
particular and the calculated density of states is compared to data from
photo-electron spectroscopy. The relation between the DLM description, the
dynamical mean field approach and spin-polarized magnetically ordered modeling
is discussed.Comment: 6 pages, 4 figure
- …