207 research outputs found

    Insights into the magnetic dead layer in La0.7Sr0.3MnO3 thin films from temperature, magnetic field and thickness dependence of their magnetization

    Get PDF
    Experimental investigations of the magnetic dead layer in 7.6 nm thick film of La0.7Sr0.3MnO3 (LSMO) are reported. The dc magnetization (M) measurements for a sample cooled to T = 5 K in applied field H = 0 reveal the presence of negative remanent magnetization (NRM) in the M vs. H (magnetic field) measurements as well as in the M vs. T measurements in H = 50 Oe and 100 Oe. The M vs. T data in ZFC (zero-field-cooled) and FC (field-cooled) protocols are used to determine the blocking temperature TB in different H. Isothermal hysteresis loops at differ- ent T are used to determine the temperature dependence of saturation magnetization (MS), remanence (MR) and coercivity HC. The MS vs. T data are fit to the Bloch law,MS (T)=M0 (1–BT 3/2),showingagoodfitforT \u3c100Kandyieldingthe nearest-neighbor exchange constant J/kB 18 K. The variations of TB vs. H andHC vs. T are well described by the model often used for randomly oriented mag- netic nanoparticles with magnetic domain diameter ≈ 9 nm present in the dead-layer of thickness d =1.4 nm. Finally, the data available from literature on the thickness (D) variation of Curie temperature (TC) and MS of LSMO films grown under 200, 150, and 0.38 mTorr pressures of O2 are analyzed in terms of the finite-size scaling, with MS vs. D data fit to MS (D) = MS(b)(1-d/D) yielding the dead layer thickness d = 1.1 nm, 1.4 nm and 2.4 nm respectively

    Electron and hole states in quantum-dot quantum wells within a spherical 8-band model

    Get PDF
    In order to study heterostructures composed both of materials with strongly different parameters and of materials with narrow band gaps, we have developed an approach, which combines the spherical 8-band effective-mass Hamiltonian and the Burt's envelope function representation. Using this method, electron and hole states are calculated in CdS/HgS/CdS/H_2O and CdTe/HgTe/CdTe/H_2O quantum-dot quantum-well heterostructures. Radial components of the wave functions of the lowest S and P electron and hole states in typical quantum-dot quantum wells (QDQWs) are presented as a function of radius. The 6-band-hole components of the radial wave functions of an electron in the 8-band model have amplitudes comparable with the amplitude of the corresponding 2-band-electron component. This is a consequence of the coupling between the conduction and valence bands, which gives a strong nonparabolicity of the conduction band. At the same time, the 2-band-electron component of the radial wave functions of a hole in the 8-band model is small compared with the amplitudes of the corresponding 6-band-hole components. It is shown that in the CdS/HgS/CdS/H_2O QDQW holes in the lowest states are strongly localized in the well region (HgS). On the contrary, electrons in this QDQW and both electron and holes in the CdTe/HgTe/CdTe/H_2O QDQW are distributed through the entire dot. The importance of the developed theory for QDQWs is proven by the fact that in contrast to our rigorous 8-band model, there appear spurious states within the commonly used symmetrized 8-band model.Comment: 15 pages, 5 figures, E-mail addresses: [email protected], [email protected]

    Local fluctuations in quantum critical metals

    Full text link
    We show that spatially local, yet low-energy, fluctuations can play an essential role in the physics of strongly correlated electron systems tuned to a quantum critical point. A detailed microscopic analysis of the Kondo lattice model is carried out within an extended dynamical mean-field approach. The correlation functions for the lattice model are calculated through a self-consistent Bose-Fermi Kondo problem, in which a local moment is coupled both to a fermionic bath and to a bosonic bath (a fluctuating magnetic field). A renormalization-group treatment of this impurity problem--perturbative in ϵ=1γ\epsilon=1-\gamma, where γ\gamma is an exponent characterizing the spectrum of the bosonic bath--shows that competition between the two couplings can drive the local-moment fluctuations critical. As a result, two distinct types of quantum critical point emerge in the Kondo lattice, one being of the usual spin-density-wave type, the other ``locally critical.'' Near the locally critical point, the dynamical spin susceptibility exhibits ω/T\omega/T scaling with a fractional exponent. While the spin-density-wave critical point is Gaussian, the locally critical point is an interacting fixed point at which long-wavelength and spatially local critical modes coexist. A Ginzburg-Landau description for the locally critical point is discussed. It is argued that these results are robust, that local criticality provides a natural description of the quantum critical behavior seen in a number of heavy-fermion metals, and that this picture may also be relevant to other strongly correlated metals.Comment: 20 pages, 12 figures; typos in figure 3 and in the main text corrected, version as publishe

    Guidelines for the management of biliary tract and ampullary carcinomas: surgical treatment

    Get PDF
    The only curative treatment in biliary tract cancer is surgical treatment. Therefore, the suitability of curative resection should be investigated in the first place. In the presence of metastasis to the liver, lung, peritoneum, or distant lymph nodes, curative resection is not suitable. No definite consensus has been reached on local extension factors and curability. Measures of hepatic functional reserve in the jaundiced liver include future liver remnant volume and the indocyanine green (ICG) clearance test. Preoperative portal vein embolization may be considered in patients in whom right hepatectomy or more, or hepatectomy with a resection rate exceeding 50%–60% is planned. Postoperative complications and surgery-related mortality may be reduced with the use of portal vein embolization. Although hepatectomy and/or pancreaticoduodenectomy are preferable for the curative resection of bile duct cancer, extrahepatic bile duct resection alone is also considered in patients for whom it is judged that curative resection would be achieved after a strict diagnosis of its local extension. Also, combined caudate lobe resection is recommended for hilar cholangiocarcinoma. Because the prognosis of patients treated with combined portal vein resection is significantly better than that of unresected patients, combined portal vein resection may be carried out. Prognostic factors after resection for bile duct cancer include positive surgical margins, especially in the ductal stump; lymph node metastasis; perineural invasion; and combined vascular resection due to portal vein and/or hepatic artery invasion. For patients with suspected gallbladder cancer, laparoscopic cholecystectomy is not recommended, and open cholecystectomy should be performed as a rule. When gallbladder cancer invading the subserosal layer or deeper has been detected after simple cholecystectomy, additional resection should be considered. Prognostic factors after resection for gallbladder cancer include the depth of mural invasion; lymph node metastasis; extramural extension, especially into the hepatoduodenal ligament; perineural invasion; and the degree of curability. Pancreaticoduodenectomy is indicated for ampullary carcinoma, and limited operation is also indicated for carcinoma in adenoma. The prognostic factors after resection for ampullary carcinoma include lymph node metastasis, pancreatic invasion, and perineural invasion

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF

    Measurement of the top quark mass using events with a single reconstructed top quark in pp collisions at root s=13 TeV

    Get PDF
    Abstract:A measurement of the top quark mass is performed using a data sample en-riched with single top quark events produced in thetchannel. The study is based on proton-proton collision data, corresponding to an integrated luminosity of 35.9 fb−1, recorded at√s= 13TeV by the CMS experiment at the LHC in 2016. Candidate events are selectedby requiring an isolated high-momentum lepton (muon or electron) and exactly two jets,of which one is identified as originating from a bottom quark. Multivariate discriminantsare designed to separate the signal from the background. Optimized thresholds are placedon the discriminant outputs to obtain an event sample with high signal purity. The topquark mass is found to be172.13+0.76−0.77GeV, where the uncertainty includes both the sta-tistical and systematic components, reaching sub-GeV precision for the first time in thisevent topology. The masses of the top quark and antiquark are also determined separatelyusing the lepton charge in the final state, from which the mass ratio and difference aredetermined to be0.9952+0.0079−0.0104and0.83+1.79−1.35GeV, respectively. The results are consistentwithCPTinvariance

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at √s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into diferent pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at √s = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, tt¯, and tb) or third-generation leptons (τν and τ τ ) are included in this kind of combination for the frst time. A simplifed model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confdence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion
    corecore