377 research outputs found

    On the predictability of extremes: Does the butterfly effect ever decrease?

    Get PDF
    This is the peer reviewed version of the following article: Sterk, A. E., Stephenson, D. B., Holland, M. P. and Mylne, K. R. (2015), On the predictability of extremes: Does the butterfly effect ever decrease?. Quarterly Journal of the Royal Meteorological Society, which has been published in final form at http://dx.doi.org/10.1002/qj.2627. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving: http://olabout.wiley.com/WileyCDA/Section/id-820227.html#termsThis study investigates whether or not predictability always decreases for more extreme events. Predictability is measured by the Mean Squared Error (MSE), estimated here from the difference of pairs of ensemble forecasts, conditioned on one of the forecast variables (the 'pseudo-observation') exceeding a threshold. Using an exchangeable linear regression model for pairs of forecast variables, we show that the MSE can be decomposed into the sum of three terms: a threshold-independent constant, a mean term that always increases with threshold, and a variance term that can either increase, decrease, or stay constant with threshold. Using the generalised Pareto distribution to model wind speed excesses over a threshold, we show that MSE always increases with threshold at sufficiently high threshold. However, MSE can be a decreasing function of threshold at lower thresholds but only if the forecasts have finite upper bounds. The methods are illustrated by application to daily wind speed forecasts for London made using the 24 member Met Office Global and Regional Ensemble Prediction System from 1 January 2009 to 31 May 2011. For this example, the mean term increases faster than the variance term decreases with increasing threshold, and so predictability decreases for more extreme events.Engineering and Physical Sciences Research Council (EPSRC)Netherlands Organisation for Scientific Research (NWO

    Reduced Hypoxia Risk in a Systemic Sclerosis Patient with Interstitial Lung Disease after Long-Term Pulmonary Rehabilitation

    Get PDF
    Pulmonary rehabilitation is effective for improving exercise capacity in patients with interstitial lung disease (ILD), and most programs last about 8 weeks. A 43-year-old male patient with systemic sclerosis and oxygen saturation (SpO2) declining because of severe ILD was hospitalized for treatment of chronic skin ulcers. During admission, he completed a 27-week walking exercise program with SpO2 monitoring. Consequently, continuous walking distance without severe hypoxia (SpO2 > 90%) increased from 60 m to 300 m after the program, although his six-minute walking distance remained the same. This suggests that walking exercise for several months may reduce the risk of hypoxia in patients with ILD, even though exercise capacity does not improve

    Dynamics of digging in wet soil

    Get PDF
    Numerous animals live in, and locomote through, subsea soils. To move in a medium dominated by frictional interactions, many of these animals have adopted unique burrowing strategies. This paper presents a burrowing model inspired by the Atlantic razor clam ({\it Ensis directus}), which uses deformations of its body to cyclically loosen and re-pack the surrounding soil in order to locally manipulate burrowing drag. The model reveals how an anisotropic body -- composed of a cylinder and sphere varying sinusoidally in size and relative displacement -- achieves unidirectional motion through a medium with variable frictional properties. This net displacement is attained even though the body kinematics are reciprocal and inertia of both the model organism and the surrounding medium are negligible. Our results indicate that body aspect ratio has a strong effect on burrowing velocity and efficiency, with a well-defined maximum for given kinematics and soil material properties

    The spectral properties of non-condensate particles in Bose-condensed atomic hydrogen

    Full text link
    The strong spin-dipole relaxation, accompanying BEC in a gas of atomic hydrogen, determines the formation of a quasistationary state with a flux of particles in energy space to the condensate. This state is characterized by a significant enhancement of the low-energy distribution of non-condensate particles resulting in a growth of their spatial density in the trap. This growth leads to the anomalous reconstruction of the optical spectral properties of non-condensate particles.Comment: revised, 4 pages, RevTeX, 2 figure

    Interference, reduced action, and trajectories

    Get PDF
    Instead of investigating the interference between two stationary, rectilinear wave functions in a trajectory representation by examining the two rectilinear wave functions individually, we examine a dichromatic wave function that is synthesized from the two interfering wave functions. The physics of interference is contained in the reduced action for the dichromatic wave function. As this reduced action is a generator of the motion for the dichromatic wave function, it determines the dichromatic wave function's trajectory. The quantum effective mass renders insight into the behavior of the trajectory. The trajectory in turn renders insight into quantum nonlocality.Comment: 12 pages text, 5 figures. Typos corrected. Author's final submission. A companion paper to "Welcher Weg? A trajectory representation of a quantum Young's diffraction experiment", quant-ph/0605121. Keywords: interference, nonlocality, trajectory representation, entanglement, dwell time, determinis

    Distributed Community Detection in Dynamic Graphs

    Full text link
    Inspired by the increasing interest in self-organizing social opportunistic networks, we investigate the problem of distributed detection of unknown communities in dynamic random graphs. As a formal framework, we consider the dynamic version of the well-studied \emph{Planted Bisection Model} \sdG(n,p,q) where the node set [n][n] of the network is partitioned into two unknown communities and, at every time step, each possible edge (u,v)(u,v) is active with probability pp if both nodes belong to the same community, while it is active with probability qq (with q<<pq<<p) otherwise. We also consider a time-Markovian generalization of this model. We propose a distributed protocol based on the popular \emph{Label Propagation Algorithm} and prove that, when the ratio p/qp/q is larger than nbn^{b} (for an arbitrarily small constant b>0b>0), the protocol finds the right "planted" partition in O(logn)O(\log n) time even when the snapshots of the dynamic graph are sparse and disconnected (i.e. in the case p=Θ(1/n)p=\Theta(1/n)).Comment: Version I

    Pathways into services for offenders with intellectual disabilities : childhood experience, diagnostic information and offence variables

    Get PDF
    The patterns and pathways into intellectual disability (ID) offender services were studied through case file review for 477 participants referred in one calendar year to community generic, community forensic, and low, medium, and maximum secure services. Data were gathered on referral source, demographic information, index behavior, prior problem behaviors, diagnostic information, and abuse or deprivation. Community referrers tended to refer to community services and secure service referrers to secure services. Physical and verbal violence were the most frequent index behaviors, whereas contact sexual offenses were more prominent in maximum security. Age at first incident varied with security, with the youngest in maximum secure services. Attention-deficit/hyperactivity disorder or conduct disorder was the most frequently recorded diagnosis, and severe deprivation was the most frequent adverse developmental experience. Fire starting, theft, and road traffic offenses did not feature prominently. Generic community services accepted a number of referrals with forensic-type behavior and had higher proportions of both women and people with moderate or severe ID

    Noncommutative Geometry and Symplectic Field Theory

    Get PDF
    In this work we study representations of the Poincare group defined over symplectic manifolds, deriving the Klein-Gordon and the Dirac equation in phase space. The formalism is associated with relativistic Wigner functions; the Noether theorem is derived in phase space and an interacting field, including a gauge field, approach is discussed.Comment: To appear in Physics Letters
    corecore