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This study investigates whether or not predictability always decreases for more extreme

events. Predictability is measured by the Mean Squared Error (MSE), estimated here

from the difference of pairs of ensemble forecasts, conditioned on one of the forecast

variables (the “pseudo-observation”) exceeding a threshold.

Using an exchangeable linear regression model for pairs of forecast variables, we show

that the MSE can be decomposed into the sum of three terms: a threshold-independent

constant, a mean term that always increases with threshold, and a variance term that

can either increase, decrease, or stay constant with threshold. Using the Generalised

Pareto Distribution to model wind speed excesses over a threshold, we show that MSE

always increases with threshold at sufficiently high threshold. However, MSE can be a

decreasing function of threshold at lower thresholds but only if the forecasts have finite

upper bounds.

The methods are illustrated by application to daily wind speed forecasts for London

made using the 24 member Met Office Global and Regional Ensemble Prediction System

from 1 Jan 2009 to 31 May 2011. For this example, the mean term increases faster than

the variance term decreases with increasing threshold, and so predictability decreases

for more extreme events.
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1. Introduction

A classical issue in weather prediction is the inherent inaccuracy

of forecasts (Tribbia and Anthes 1987). In one of the earliest

studies, Thompson (1957) showed that the predictability of large-

scale atmospheric flow patterns is sensitive to the uncertainty

in the initial condition. Since the seminal work of Lorenz

(1963a) it is well known that deterministic systems can be very

unpredictable: small errors in the initial condition can grow

exponentially in time. This phenomenon, now known colloquially

as the butterfly effect∗, fundamentally limits the accuracy of long-

term weather forecasts and stimulated mathematical research on

nonlinear dynamics and chaos theory.

Predictability is often quantified in terms of the growth rate of

errors in the initial condition. The earliest studies (Smagorinsky

1963; Mintz 1964; Leith 1965) computed the time needed for

small errors in the initial condition to double in size. This so-called

doubling time is inversely proportional to the largest Lyapunov

exponent provided that the initial error is sufficiently small

(Lorenz 2006). However, Lyapunov exponents are independent of

the initial condition, which makes them unsuitable as measures

for the predictability of specific events such as weather extremes.

Finite-time Lyapunov exponents measure the exponential growth

rate of nearby trajectories over a finite time and can strongly

depend on the initial condition (Nese 1989; Abarbanel et al.

1991; Smith et al. 1999). Hence, they can be used as a measure

of predictability which depends on the event being predicted

such as extreme wind speeds at a specific geographical location

(Sterk et al. 2012).

Exponential growth rates, as measured by Lyapunov exponents,

only apply to small errors and short lead times. Harle et al. (2006)

showed that for longer lead times the error growth follows a

power law which systematically depends on the initial size of

the error. For even longer lead times the error will saturate.

Another way to quantify predictability is to compute the growth of

Mean Squared Error (MSE) between pairs of forecasts starting at

different initial conditions (Stephenson and Doblas-Reyes 2000).

∗or the sea gull effect when first published: “When the instability of a uniform flow

with respect to infinitesimal perturbations was first suggested as an explanation

for the presence of cyclones and anticyclones in the atmosphere, the idea was not

universally accepted. One meteorologist remarked that if the theory was correct,

one flap of a sea gull’s wings would be enough to alter the course of the weather

forever.” – Lorenz (1963b)

This squared distance approach is particularly useful in ensemble

prediction systems which are not equipped with a tangent linear

model needed to compute Lyapunov exponents or their finite-time

counterparts. Stroe and Royer (1993) compared different growth

formulas for the error between twin forecasts starting from nearby

initial conditions. In particular, they showed that the growth rate

for small errors and saturation rate for large errors have different

characteristics.

Despite much research on forecast error growth, there is hardly

any published research on how forecast errors behave for more

extreme events. It is often assumed that more extreme events are

harder to predict, but this belief needs to be rigorously tested.

This study makes an initial attempt to address this problem

by investigating how predictability depends on the choice of

exceedance threshold used to define an event. We propose simple

statistical models for representing ensemble forecasts and use

them to find out how Mean Squared Error (MSE) of pairs of

forecasts depends upon choice of threshold. The methods are

applied to daily wind speed forecasts for London made using the

24 member Met Office Global and Regional Ensemble Prediction

System from 1 Jan 2009 to 31 May 2011. Section 2 shows

how the MSE depends on lead time and wind speed thresholds.

Section 3 then uses extreme value theory (the Generalised Pareto

Distribution) to quantify the behaviour in the limit of very high

thresholds. Section 4 concludes the paper with a discussion of our

results.

2. Mean Squared Error growth

2.1. Ensemble forecast data: exchangeable variables

We illustrate our methods using a data set of ensemble 10m wind

speed forecasts produced by the Met Office Global and Regional

Ensemble Prediction System (Bowler et al. 2008). In total, we

have 866 forecasts at 5 locations in the United Kingdom (see

Table 1) for the period 1 January 2009 until 31 May 2011. For

each day, the m = 24 ensemble members are initialised at 0600

UTC, and predictions are made out to lead times τ = 3, 6 . . . , 54

hours ahead. For brevity, only results for London will be presented

here but these are robust: similar results were found at the other 4

locations.

c© 2013 Royal Meteorological Society Prepared using qjrms4.cls
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Figure 2. Scatter plots of the pairs (Xi, Xj) for 1 ≤ i, j ≤ 3 for the lead times τ = 3 and τ = 54. Scatter plots for the remaining pairs (i, j) are qualitatively similar

(not shown).
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Figure 1. Box plots of the wind speed forecasts for lead times τ = 3 and τ = 54.

Let Xi = Xi(τ ) denote the i-th ensemble member (i =

1, . . . ,m = 24) of the wind speed forecasts for a fixed lead time

τ . Figure 1 shows box plots of the ensemble members Xi for lead

times τ = 3 and τ = 54 hours. The box plots suggest that the

Xi have similar distributions. It is therefore reasonable to make

the assumption that the ensemble members Xi are exchangeable,

which means that (X1, . . . , Xm) and (Xσ(1), . . . , Xσ(m)) have

the same joint distribution for any permutation σ of the indices

{1, . . . ,m} (Kallenberg 2005).

Table 1. Five locations in the United Kingdom for which we have wind speed

forecasts.

ID Location

00003134 Bishopton (Glasgow)

00003355 Church Fenton (Leeds)

00003535 Coleshill (Birmingham)

00003628 Filton (Bristol)

00003772 Heathrow Airport (London)

2.2. Relationship between forecasts

The scatter plots in Figure 2 suggest a linear association between

Xi and Xj , which can be represented using a linear regression

model:

Xi = µ+ ρ(Xj − µ) + εij . (1)

where µ and ρ are respectively the mean and the covariance of

the Xi’s. The error εij is considered to be zero mean and constant

variance noise that is independent of Xj . For notational simplicity,

the dependence of µ, ρ, and εij on τ is suppressed. However, we

assume that µ and ρ and the variance of the noise are identical for

all pairs (i, j). Point estimates of the µ and ρ parameters can be

c© 2013 Royal Meteorological Society Prepared using qjrms4.cls
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found easily by using an exchangeable extension of ordinary least

squares estimation, see Appendix A.1.

Figure 3 shows graphs of µ and ρ versus the lead time τ . The

mean µ follows a diurnal cycle and attains its minimum at lead

times τ = 21 and τ = 45 hours which corresponds to 0300 UTC

since all forecasts are initialised at 0600 UTC. This agrees with

the fact that wind speeds are generally lower during the night. The

correlation coefficient ρ (and predictability) decreases with lead

time τ , related to the growth of forecast errors.

2.3. Conditional Mean Squared Error

This predictability study adopts the perfect model scenario:

instead of comparing forecasts with observations we will pairwise

compare ensemble members with each other. Inclusion of

observations would invalidate our assumption of exchangeability

because of epistemic uncertainties in how the forecast model

represents the real world (e.g. presence of model errors, biases,

etc.). One member Xi is assumed to be the “forecast” and another

member Xj (with j 6= i) is assumed to be a “pseudo-observation”.

As our measure of predictability, we consider the conditional

Mean Squared Error averaged over all distinct pairs of ensemble

members:

MSE(τ, u) =
1

m(m− 1)

∑

i6=j

E ([Xi −Xj ]
2 | Xj > u) (2)

where the threshold u is taken here to be an empirical quantile of

all the Xj’s.

A key question is how the MSE depends on both the lead time

τ and the threshold u. The top panel of Figure 4 shows a graph of

the conditional MSE as a function of the lead time τ for fixed

thresholds u. For u = 0 the MSE is an increasing function of

τ . For u > 0, however, the MSE has local maxima near τ = 21

and τ = 45 (0300 UTC) and a local minimum near τ = 33 (1500

UTC). Thus, errors are larger during the night than during the day.

The bottom panel of Figure 4 shows a graph of the conditional

MSE as a function of the threshold u for fixed lead times τ . The

MSE increases with u, but the growth rates are larger for τ = 21

and τ = 45 than for τ = 33.

But can we understand the reasons for this behaviour in MSE?

From equation (1) it is shown in Appendix A.2 that the conditional

MSE between a pair of forecasts, E ([Xi −Xj ]
2 | Xj > u), is the

sum of three terms:

(1− ρ2)Var (Xj) + (1− ρ)2E (Xj − µ | Xj > u)2

+ (1− ρ)2Var (Xj | Xj > u)

(3)

All terms contain the factor 1− ρ or 1− ρ2 and so vanish for

perfectly dependent forecasts with ρ = 1 (e.g. at initial time

τ = 0). The first term involves the unconditional variance of the

forecast and so is independent of threshold u. The second term

is based on the squared mean of the difference of the forecasts

from the mean and so increases monotonically for large threshold

u > µ. We will refer to this term as the squared mean excess. The

third term is based on the conditional variance of the forecasts,

which can either increase or decrease with increasing threshold. If

Xj has a finite upper end point, then this term will tend to zero as

threshold u approaches the end point.

Ensemble summaries can be obtained by averaging each term

over all distinct pairs of ensemble forecasts. For example, for the

first term in equation (3) we obtain

1

m(m− 1)

∑

i6=j

(1− ρ2)Var (Xj) =
1

m

m∑

j=1

(1− ρ2)Var (Xj).

Analogous expressions hold for the second and third term. To test

the validity of the decomposition, Figure 5 shows the difference

between the mean square error (2) and the sum of the ensemble

averages of the three terms for threshold u = 0. Because of

sampling variations in the estimates of the components, the

difference is not identically zero, however, it is only a small

fraction of the MSE and its variation with lead time and threshold

shown in Figure 4.

Figure 6 shows the averaged conditional variance and squared

excess as functions of lead time τ and threshold u. The conditional

variance term increases with τ for fixed u, but decreases with

u for fixed τ . The squared mean excess term has local maxima

near τ = 21 and τ = 45 and a local minimum near τ = 33. For

fixed lead time, it is an increasing function of u as expected. The

mean excess term increases faster than the variance term decreases

and so the conditional MSE increases for higher thresholds. In

c© 2013 Royal Meteorological Society Prepared using qjrms4.cls
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Figure 3. The coefficients µ and ρ in equation (1) estimated by the least squares

method described in Appendix A.1 and plotted as a function of the lead time τ .

Note that the mean µ follows a diurnal cycle and attains its minimum for τ = 21
and τ = 45 (0300 UTC).

other words, predictability decreases for extremes in this example

because of extreme forecasts being further from the mean.

3. What happens at high thresholds?

The decomposition (3) shows that threshold dependence is related

to how the 1st and 2nd moments of forecast excesses vary

with threshold (note that for fixed τ the coefficient ρ is a

threshold-independent constant). This section will model wind

speed excesses over a threshold using extreme value theory to

understand the possible behaviour at high thresholds.

3.1. Modelling excesses using the Generalised Pareto

Distribution

Under widely applicable conditions (Balkema and de Haan 1974;

Pickands 1975) the distribution of excesses X − u is well-

approximated by the Generalised Pareto Distribution (GPD)

Gξ,β(u)(x) :=





1−
(
1 + ξx

β(u)

)−1/ξ
if ξ 6= 0

1− exp
(
− x

β(u)

)
if ξ = 0

(4)
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Figure 4. Top panel: averaged conditional mean square error as a function of the

lead time τ for three thresholds u. The thresholds u > 0 correspond to the 80th and

90th percentile of the distribution of wind speed forecasts. Bottom panel: averaged
conditional mean square error as a function of the threshold u for different lead

times τ .
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Figure 5. The difference between the mean squared error (2) and the decomposition
terms in the right hand side of (3) as a function of the lead time τ .

for X exceeding sufficiently high thresholds. The scale parameter

is a linear function of threshold, β(u) = σ + ξ(u− λ), which

either increases, stays constant, or decreases depending on

whether the shape parameter ξ is positive, zero, or negative,

respectively (Coles 2001). For ξ < 0, the distribution has a finite

upper end point at xF = λ− σ/ξ, but is unbounded when the

shape parameter is non-negative. The distribution of excesses

above any high threshold is completely determined by just three

c© 2013 Royal Meteorological Society Prepared using qjrms4.cls
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Figure 6. Top panels: the conditional variance (ρ − 1)2Var (Xj | Xj > u) and squared excess (ρ − 1)2E (Xj − µ | Xj > u) (both averaged over all ensemble
members) as a function of the lead time τ for fixed thresholds u. Bottom panels: the same quantities as function of the threshold u for fixed lead times.

parameters: (λ, σ, ξ). Note that the location parameter for the tail,

λ, should not be confused with the central location parameter

µ = E(X). The GPD can now be used to find the components

in the MSE decomposition.

3.2. Conditional MSE components

The 1st and 2nd moments of the GPD (see Appendix A.3) can be

used to find expressions for the mean and variance components†

of the MSE decomposition:

E(u) = E (X − µ | X > u)2

=
(
E (X − u | X > u) + u− µ

)2

=

(
β + (1− ξ)(u− µ)

1− ξ

)2

,

†without the ρ dependent multipliers

and

V (u) = Var (X | X > u)

= Var (X − u | X > u)

=
β2

(1− ξ)2(1− 2ξ)
.

These expressions reveal that the mean component E(u) increases

monotonically for u > µ+ ξ(λ− µ)− σ regardless of the values

of the other parameters. For large u, E(u) ∼ u2. In contrast,

the variance component V (u) either increases, stays constant, or

decreases with u depending upon whether ξ > 0, ξ = 0, or ξ < 0,

respectively. Hence, for ξ ≥ 0, the sum of the two terms S(u) =

E(u) + V (u) is a strictly monotonically increasing function of

threshold: the butterfly effect increases for higher thresholds. For

ξ < 0, decreasing V (u) compensates increasing E(u) to create a

minimum S(u) at

umin =
µ(1− 2ξ) + ξλ− σ

1− ξ
. (5)

c© 2013 Royal Meteorological Society Prepared using qjrms4.cls
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As u tends to xF , V (u) decreases at a slower rate than E(u)

increases and so S(u) increases as the threshold approaches the

end point. In summary, the MSE always increases with threshold

at sufficiently high threshold, although it can be a decreasing

function of threshold at lower thresholds but only if the forecasts

have finite upper bounds (ξ < 0).

It is instructive to consider some special cases. Figure 7 shows

the behaviour of the components when the forecasts are simulated

from uniform and normal distributions. The results agree with

what is expected from the above GPD theory. The U(0, 1) uniform

distribution can easily be shown to have λ = 0, σ = 1, ξ = −1 and

µ = 0.5 and so one expects an increasing mean component, a

decreasing variance component and a minimum at umin = 0.25,

as can be seen in panel a. The Normal distribution can be shown

to have ξ = 0 and so one expects to see an increasing mean

component and a constant variance component, which is occurring

for larger threshold in panel b.
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Figure 7. Examples of threshold dependence in S(u) = E(u) + V (u) (solid

line), E(u) (dashed line), and V (u) (dotted line) for forecasts that are a) uniformly
distributed X ∼ U(0, 1), and b) Normally distributed X ∼ N(0, 1). Curves were

obtained by simulating 105 values from the respective distributions.
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Figure 8. Threshold selection plots for the variable X1 and lead time τ = 21.

3.3. GPD analysis of the wind speed data

Can we use GPD fits to understand the behaviour seen earlier in

our wind speed forecast example?

The parameter µ can be estimated from the linear model (1)

using the least squares procedure described in Section A.1. The

parameters (λ, σ, ξ) can be estimated by first selecting a fixed

threshold u0 and then fit the exceedances X − u0 > 0 to a Poisson

process (Coles 2001). This procedure is implemented in the fpot

command, which is part of the R package evd (Stephenson 2002).

The selection of the threshold u0 depends on two contradicting

requirements. On the one hand u0 should be as small as possible in
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Figure 9. Diagnostic plots obtained from estimating the parameters (λ, σ, ξ) for

the lead time τ = 21. The parameters were estimated using 866 daily data values

and so the return period, which is the reciprocal of the exceedance probability, is in
units of 866 days.

order to have many exceedances X − u0 > 0 thereby decreasing

the variance of the estimates for (λ, σ, ξ). On the other hand

u0 should be large in order to ensure that the asymptotic GPD

is a valid model for the exceedances X − u0 > 0. If Gβ,ξ is

a valid model for X | X > u0 then the mean excess function

E (X − u | X > u) for u > u0 is linear in u. Moreover, the shape

parameter ξ and the modified scale parameter β − ξu should be

approximately linear in u. We adopt these criteria for selecting

u0.

For example, Figure 8 shows threshold selection plots for the

variable X1 of the London wind speed forecasts for the lead

time τ = 21. Based on these plots we set u0 = 3.5. Subsequently,

the parameters (λ, σ, ξ) can be estimated. The diagnostic plots in

Figure 9 indicate that the fit is fairly good: the quantile plot is

nearly diagonal and the empirical return levels agree well with the

fitted return levels. This procedure has been repeated for the lead

times τ = 33 and τ = 45, see Table 2 for the results.

The wind speed forecasts have a negative shape parameter

which implies that the function S(u) might have a minimum.

However, the value umin given in Table 2, computed from the

GPD parameter estimates using equation (5), is far below the

average of the wind speed forecasts (see Figure 1). At such low

values, the GPD is no longer a good approximation for excesses,

which may help to explain why no such minimum can be seen in

Figure 4.

Table 2. Point process estimates for the parameters (λ, σ, ξ) for different lead

times τ . The standard errors are listed between parentheses.

τ u0 λ̂ σ̂ ξ̂ umin

21 3.5 9.56 (0.50) 0.69 (0.16) -0.13 (0.04) 2.00

33 4.8 9.74 (0.25) 0.29 (0.06) -0.32 (0.04) 2.90

45 3.5 10.17 (0.64) 0.91 (0.22) -0.07 (0.05) 2.04

4. Conclusion

This study has investigated whether or not predictability can

increase for more extreme events. Predictability is measured

here by the Mean Squared Error (MSE) between pairs of

ensemble forecasts, conditioned on one of the forecast variables

(the “pseudo-observation”) exceeding a threshold. Assuming

an exchangeable linear regression model for pairs of forecast

variables, we have found that the MSE can be decomposed into

the sum of three terms: a threshold-independent constant, a mean

term that always increases with threshold, and a variance term

that can either increase, decrease, or stay constant with threshold.

Extreme value theory has revealed that MSE always increases

with threshold at sufficiently high threshold. Furthermore, MSE

can be a decreasing function of threshold at lower thresholds but

only if the forecasts have finite upper bounds.

In summary, our modelling approach suggests that the butterfly

effect generally increases for more extreme events. This is

predominantly due to the average distance between pairs of

forecasts increasing if one of the forecasts is constrained to be

in a more extreme edge of state space. For bounded forecasts,

a reduction in variance can help to compensate this but is

insufficient to do so as one approaches the edge of the attractor.

The methods have been applied to daily wind speed forecasts

for London made using the 24 member Met Office Global and

Regional Ensemble Prediction System from 1 Jan 2009 to 31 May

2011. The MSE has a local minimum during the nights and a local

maximum during the afternoons. The MSE is found to increase

c© 2013 Royal Meteorological Society Prepared using qjrms4.cls
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monotonically with threshold, especially so during the night. The

mean component increases and the variance component decreases

with threshold as to be expected for variables that are estimated to

be bounded from above (negative GPD shape parameter).

Our approach relies on several assumptions, which appear

reasonable but should be investigated in more detail in future

work. For example, we have modelled dependency between

forecasts using a simple linear model with constant variance noise.

This appears to work well for our data example but more complex

models may be appropriate for other data sets. It is possible that

there could be more predictability at higher thresholds if one

were to allow for extremal dependency between forecasts using

bivariate copula approaches (Stephenson et al. 2008).

This study has addressed predictability by focussing on

mean squared error—a measure of skill for deterministic

forecasts. In future studies, it would be of interest to extend

the approach to address probability forecasts e.g. by using

modified decompositions to decompose the Brier score, which

for frequency of exceedance above a threshold may be expressed

as a mean squared error of binary forecasts. One other caveat

is that this study has measured predictability using an absolute

score but one may find alternative conclusions if one were to

assess predictability by measuring skill against no-skill forecasts

(e.g. using the MSE skill score against either persistence or

climatological forecasts).

As with all previous perfect model approaches, we have made

the assumption that observations are exchangeable with ensemble

forecasts. When this is not the case and the forecasts contain

more unpredictable noise than the observations (e.g. Eade et al.

2014), then real world observations will give smaller MSE than

the MSE of pairs of forecasts. However, we suspect that the

broad conclusions about increase of MSE with threshold may still

generally apply to unreliable forecasts that are co-exchangeable

with the observations.

Although we have illustrated our approach using weather

forecasts of wind speeds, the methodology is generic and so

could be applied to other predicted quantities of interest such as

temperatures or river flows.
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A. Appendix

A.1. Ordinary least squares estimation for exchangeable

variables

The coefficients µ and ρ in equation (1) are estimated by a least-

squares method as follows. First, rewrite equation (1) as

Xi = a+ bXj + εij

where a = (1− ρ)µ and b = ρ. The coefficients a and b are

obtained by minimizing the expression

SSE =
1

N

∑(
µ+ ρ(Xj − µ)−Xi

)2
,

where the summation ranges over all 866 days and all pairs i 6= j

so that N = 866 ·m(m− 1). Setting the partial derivatives of the

SSE with respect to µ and ρ to zero gives the equations

Na+ b
∑

Xj =
∑

Xi

a
∑

Xj + b
∑

X2
j =

∑
XiXj

from which a and b are readily solved. Finally, ρ = b and µ =

a/(1− b). This computation is repeated for each lead time τ .
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A.2. Decomposition of the MSE

Recall the formula for conditional variance (Ross 1997):

Var (X | Y ) = E ([X − E (X | Y )]2 | Y )

= E (X2 | Y )− E (X | Y )2.

Using equation (1), the MSE of Xi −Xj conditional on Xj > u

can be written as

E ([Xi −Xj ]
2 | Xj > u)

= Var (Xi −Xj | Xj > u) + E (Xi −Xj | Xj > u)2

= Var ((1− ρ)µ+ (ρ− 1)Xj + εij | Xj > u)

+ E ((1− ρ)µ+ (ρ− 1)Xj + εij | Xj > u)2

= Var ((ρ− 1)Xj + εij | Xj > u)

+
{
(ρ− 1)E (Xj − µ | Xj > u) + E (εij | Xj > u)

}2
.

The latter expression simplifies under the additional assumption

that the error εij is independent of Xj . This implies that

E (εij | Xj > u) = E (εij) = 0

and

Var ((ρ− 1)Xj + εij | Xj > u)

= (ρ− 1)2Var (Xj | Xj > u) + Var (εij | Xj > u)

= (ρ− 1)2Var (Xj | Xj > u) + Var (εij).

Note that equation (1) implies that

Var (Xi) = ρ2Var (Xj) + Var (εij).

Assuming that Var (Xi) = Var (Xj) gives

Var (εij) = (1− ρ2)Var (Xi) = (1− ρ2)Var (Xj).

Hence, the final decomposition of the conditional mean square

error reads as

E ([Xi −Xj ]
2 | Xj > u)

= (1− ρ2)Var (Xj) + (ρ− 1)2Var (Xj | Xj > u)

+ (ρ− 1)2E (Xj − µ | Xj > u)2.

A.3. Moments of the generalised Pareto distribution

Let X have a generalised Pareto distribution with scale parameter

β and tail index ξ. For any natural number r satisfying ξ < 1/r we

have

E (Xr) =
βr

ξr+1 ·
Γ(ξ−1 − r)

Γ(ξ−1 + 1)
r!,

where Γ is the Gamma function (Embrechts et al. 1997). Note that

the expectation of Xr does not exist when 1/r ≤ ξ. For ξ < 1
2 we

have

E (X) =
β

1− ξ
and E (X2) =

2β2

(1− ξ)(1− 2ξ)
.

Hence, the variance is given by

Var (X) =
β2

(1− ξ)2(1− 2ξ)
.

Furthermore, the mean excess function is given by

E (X − u | X > u) =
β + ξu

1− ξ
.
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