154 research outputs found

    Energy composition of the Universe: time-independent internal symmetry

    Full text link
    The energy composition of the Universe, as emerged from the Type Ia supernova observations and the WMAP data, looks preposterously complex, -- but only at the first glance. In fact, its structure proves to be simple and regular. An analysis in terms of the Friedmann integral enables to recognize a remarkably simple time-independent covariant robust recipe of the cosmic mix: the numerical values of the Friedmann integral for vacuum, dark matter, baryons and radiation are approximately identical. The identity may be treated as a symmetry relation that unifies cosmic energies into a regular set, a quartet, with the Friedmann integral as its common genuine time-independent physical parameter. Such cosmic internal (non-geometrical) symmetry exists whenever cosmic energies themselves exist in nature. It is most natural for a finite Universe suggested by the WMAP data. A link to fundamental theory may be found under the assumption about a special significance of the electroweak energy scale in both particle physics and cosmology. A freeze-out model developed on this basis demonstrates that the physical nature of new symmetry might be due to the interplay between electroweak physics and gravity at the cosmic age of a few picoseconds. The big `hierarchy number' of particle physics represents the interplay in the model. This number quantifies the Friedmann integral and gives also a measure to some other basic cosmological figures and phenomena associated with new symmetry. In this way, cosmic internal symmetry provides a common ground for better understanding of old and recent problems that otherwise seem unrelated; the coincidence of the observed cosmic densities, the flatness of the co-moving space, the initial perturbations and their amplitude, the cosmic entropy are among them.Comment: 32 page

    Can modified gravity explain accelerated cosmic expansion?

    Full text link
    We show that the recently suggested explanations of cosmic acceleration by the modification of gravity at small curvature suffer violent instabilities and strongly disagree with the known properties of gravitational interactions.Comment: 4 pages, no figure, revised version (one footnote added

    Dark energy and key physical parameters of clusters of galaxies

    Full text link
    We study physics of clusters of galaxies embedded in the cosmic dark energy background. Under the assumption that dark energy is described by the cosmological constant, we show that the dynamical effects of dark energy are strong in clusters like the Virgo cluster. Specifically, the key physical parameters of the dark mater halos in clusters are determined by dark energy: 1) the halo cut-off radius is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; 2) the halo averaged density is equal to two densities of dark energy; 3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile. The cluster gravitational potential well in which the particles of the dark halo (as well as galaxies and intracluster plasma) move is strongly affected by dark energy: the maximum of the potential is located at the zero-gravity radius of the cluster.Comment: 8 pages, 1 figur

    Current constraints on Cosmological Parameters from Microwave Background Anisotropies

    Get PDF
    We compare the latest observations of Cosmic Microwave Background (CMB) Anisotropies with the theoretical predictions of the standard scenario of structure formation. Assuming a primordial power spectrum of adiabatic perturbations we found that the total energy density is constrained to be Ωtot=1.03±0.06\Omega_{tot}=1.03\pm0.06 while the energy density in baryon and Cold Dark Matter (CDM) are Ωbh2=0.021±0.003\Omega_bh^2=0.021\pm0.003 and Ωcdmh2=0.12±0.02\Omega_{cdm}h^2=0.12\pm0.02, (all at 68% C.L.) respectively. The primordial spectrum is consistent with scale invariance, (ns=0.97±0.04n_s=0.97\pm0.04) and the age of the universe is t0=14.6±0.9t_0=14.6\pm0.9 Gyrs. Adding informations from Large Scale Structure and Supernovae, we found a strong evidence for a cosmological constant ΩΛ=0.700.05+0.07\Omega_{\Lambda}=0.70_{-0.05}^{+0.07} and a value of the Hubble parameter h=0.69±0.07h=0.69\pm0.07. Restricting this combined analysis to flat universes, we put constraints on possible 'extensions' of the standard scenario. A gravity waves contribution to the quadrupole anisotropy is limited to be r0.42r \le 0.42 (95% c.l.). A constant equation of state for the dark energy component is bound to be wQ0.74w_Q \le -0.74 (95% c.l.). We constrain the effective relativistic degrees of freedom Nν6.2N_\nu \leq 6.2 and the neutrino chemical potential 0.01ξe0.18-0.01 \leq \xi_e \leq 0.18 and ξμ,τ2.3|\xi_{\mu,\tau}|\leq 2.3 (massless neutrinos).Comment: The status of cosmological parameters before WMAP. In press on Phys. Rev. D., Rapid Communication, 6 pages, 5 figure

    Is the Universe Inflating? Dark Energy and the Future of the Universe

    Get PDF
    We consider the fate of the observable universe in the light of the discovery of a dark energy component to the cosmic energy budget. We extend results for a cosmological constant to a general dark energy component and examine the constraints on phenomena that may prevent the eternal acceleration of our patch of the universe. We find that the period of accelerated cosmic expansion has not lasted long enough for observations to confirm that we are undergoing inflation; such an observation will be possible when the dark energy density has risen to between 90% and 95% of the critical. The best we can do is make cosmological observations in order to verify the continued presence of dark energy to some high redshift. Having done that, the only possibility that could spoil the conclusion that we are inflating would be the existence of a disturbance (the surface of a true vacuum bubble, for example) that is moving toward us with sufficiently high velocity, but is too far away to be currently observable. Such a disturbance would have to move toward us with speed greater than about 0.8c in order to spoil the late-time inflation of our patch of the universe and yet avoid being detectable.Comment: 7 pages, 7 figure

    Newtonian limit of the singular f(R) gravity in the Palatini formalism

    Full text link
    Recently D. Vollick [Phys. Rev. D68, 063510 (2003)] has shown that the inclusion of the 1/R curvature terms in the gravitational action and the use of the Palatini formalism offer an alternative explanation for cosmological acceleration. In this work we show not only that this model of Vollick does not have a good Newtonian limit, but also that any f(R) theory with a pole of order n in R=0 and its second derivative respect to R evaluated at Ro is not zero, where Ro is the scalar curvature of background, does not have a good Newtonian limit.Comment: 9 page

    Inflation with a constant ratio of scalar and tensor perturbation amplitudes

    Get PDF
    The single scalar field inflationary models that lead to scalar and tensor perturbation spectra with amplitudes varying in direct proportion to one another are reconstructed by solving the Stewart-Lyth inverse problem to next-to-leading order in the slow-roll approximation. The potentials asymptote at high energies to an exponential form, corresponding to power law inflation, but diverge from this model at low energies, indicating that power law inflation is a repellor in this case. This feature implies that a fine-tuning of initial conditions is required if such models are to reproduce the observations. The required initial conditions might be set through the eternal inflation mechanism. If this is the case, it will imply that the spectral indices must be nearly constant, making the underlying model observationally indistinguishable from power law inflation.Comment: 20 pages, 7 figures. Major changes to the Introduction following referee's comments. One figure added. Some other minor changes. No conclusion was modifie

    Toward a Possible Solution to the Cosmic Coincidence Problem

    Get PDF
    It is a mystery why the density of matter and the density of vacuum energy are nearly equal today when they scale so differently during the expansion of the Universe. We suggest a paradigm that might allow for a non-anthropic solution to this cosmic coincidence problem. The fact that the half life of Uranium 238 is very near to the age of the solar system is not considered a coincidence since there are many nuclides with half lives ranging over a huge range of time scales implying that there is likely to be some nuclide with a half life near to any given time scale. Likewise it may be that the vacuum field energy causing the universal acceleration today is just one of a large ensemble of scalar field energies, which have dominated the Universe in the past and then faded away. Given that in standard cosmology and particle physics there are already several scalar fields that probably contribute to universal vacuum energy (the Higgs field, the inflaton, and whatever quintessence/dark energy field causes the current acceleration), the idea of a large ensemble of fields does not seem far fetched. Predictions of the idea include: 1) The current vacuum energy driving the acceleration is not constant and will eventually fade away, 2) The ratio w of scalar field pressure to density is currently changing and is not precisely negative one, 3) There were likely periods of vacuum dominance and acceleration in the past, 4) the current phase of acceleration will end but there may be additional periods of acceleration in the future, 5) the ultimate fate of the Universe cannot be decided until the nature of these fields is known, but the eventual sum of densities from all scalar fields could be zero, as was usually assumed before the discovery of the current universal acceleration.Comment: Version to appear in Physical Review D; corrections made to units and numerical integration. 5 Pages, LaTeX with 2 imbedded postscript figure

    Photon Spectrum Produced by the Late Decay of a Cosmic Neutrino Background

    Get PDF
    We obtain the photon spectrum induced by a cosmic background of unstable neutrinos. We study the spectrum in a variety of cosmological scenarios and also we allow for the neutrinos having a momentum distribution (only a critical matter dominated universe and neutrinos at rest have been considered until now). Our results can be helpful when extracting bounds on neutrino electric and magnetic moments from cosmic photon background observations.Comment: RevTex, 14 pages, 3 figures; minor changes, references added. To appear in Phys. Rev.

    Dark Energy and Extending the Geodesic Equations of Motion: Connecting the Galactic and Cosmological Length Scales

    Get PDF
    Recently, an extension of the geodesic equations of motion using the Dark Energy length scale was proposed. Here, we apply this extension to the analyzing the motion of test particles at the galactic scale and longer. A cosmological check of the extension is made using the observed rotational velocity curves and core sizes of 1393 spiral galaxies. We derive the density profile of a model galaxy using this extension, and with it, we calculate σ8\sigma_8 to be 0.73±0.120.73_{\pm 0.12}; this is within experimental error of the WMAP value of 0.7610.048+0.0490.761_{-0.048}^{+0.049}. We then calculate R200R_{200} to be 206±53206_{\pm 53} kpc, which is in reasonable agreement with observations.Comment: 25 pages. Accepted for publication in General Relativity and Gravitation. Paper contains the published version of the second half of arXiv:0711.3124v2 with corrections include
    corecore