11 research outputs found

    Serum cartilage oligomeric matrix protein and clinical signs and symptoms of potential pre-radiographic hip and knee pathology

    Get PDF
    OBJECTIVE: To examine the cross-sectional relationship between serum cartilage oligomeric matrix protein (COMP) and hip and knee clinical signs and symptoms in a sample of adults without radiographic hip or knee osteoarthritis (OA). DESIGN: A total of 145 persons with available sera and no evidence of radiographic hip or knee OA (Kellgren-Lawrence grade 0) were randomly selected from the Caucasian participants of the Johnston County Osteoarthritis Project. COMP was quantified by a competitive ELISA assay with a monoclonal antibody 17-C10. Hip and knee clinical signs and symptoms were assessed by physical examination and interview, and their associations with Ln COMP analysed with general linear models. RESULTS: After adjustment for age, gender, body mass index (BMI), and other symptomatic joints, mean Ln COMP was statistically significantly higher among persons with hip-related clinical signs (P=0.018), among those with hip-related symptoms (P=0.046), and among individuals meeting American College of Rheumatology clinical criteria for hip OA (P=0.021). There were no statistically significant associations between any of the knee-related clinical signs and symptoms and Ln COMP. CONCLUSION: Serum COMP may be useful as a biomarker of pre-radiographic hip joint pathology; its utility as a biomarker of pre-radiographic knee joint pathology is unclear

    Identification of an urinary metabolite profile associated with osteoarthritis

    Get PDF
    OBJECTIVE: Osteoarthritis (OA) is one of the most common diseases among the elderly. The main characteristic is the progressive destruction of articular cartilage. We lack quantitative and sensitive biomarkers for OA to detect changes in the joints in an early stage of the disease. In this study, we investigated whether a urinary metabolite profile could be found that could serve as a diagnostic biomarker for OA in humans. We also compared the profile we obtained previously in the guinea pig spontaneous OA model. METHODS: Urine samples of 92 participants (47 non-OA controls and 45 individuals with radiographic OA of the knees or hips) were selected from the Johnston County Osteoarthritis Project (North Carolina, USA). Participants ranged in age from 60 to 84 years. Samples were measured by 1H nuclear magnetic resonance spectroscopy (NMR) with subsequent principal component discriminant analysis and partial least squares regression analysis. RESULTS: Differences were observed between urine NMR spectra of OA cases and controls (P<0.001 for both male and female subjects). A metabolite profile could be determined which was strongly associated with OA. This profile largely resembled the profile previously identified for guinea pigs with OA (approximately 40 out of the approximately 125 signals of the human profile were present in the guinea pig profile as well). A correlation was found between the metabolite profile and radiographic OA severity (R2 = 0.82 (male); R2 = 0.93 (female)). CONCLUSION: This study showed that a urine metabolite profile may serve as a novel discriminating biomarker of OA

    Revisiting the HD 21749 planetary system with stellar activity modelling

    Get PDF
    HD 21749 is a bright (V = 8.1 mag) K dwarf at 16 pc known to host an inner terrestrial planet HD 21749c as well as an outer sub-Neptune HD 21749b, both delivered by Transiting Exoplanet Survey Satellite (TESS). Follow-up spectroscopic observations measured the mass of HD 21749b to be 22.7 ± 2.2 M with a density of 7.0^{+1.6}_{-1.3} g cm-3, making it one of the densest sub-Neptunes. However, the mass measurement was suspected to be influenced by stellar rotation. Here, we present new high-cadence PFS RV data to disentangle the stellar activity signal from the planetary signal. We find that HD 21749 has a similar rotational time-scale as the planet's orbital period, and the amplitude of the planetary orbital RV signal is estimated to be similar to that of the stellar activity signal. We perform Gaussian process regression on the photometry and RVs from HARPS and PFS to model the stellar activity signal. Our new models reveal that HD 21749b has a radius of 2.86 ± 0.20 R, an orbital period of 35.6133 ± 0.0005 d with a mass of Mb = 20.0 ± 2.7 M and a density of 4.8^{+2.0}_{-1.4} g cm-3 on an eccentric orbit with e = 0.16 ± 0.06, which is consistent with the most recent values published for this system. HD 21749c has an orbital period of 7.7902 ± 0.0006 d, a radius of 1.13 ± 0.10 R, and a 3σ mass upper limit of 3.5 M. Our Monte Carlo simulations confirm that without properly taking stellar activity signals into account, the mass measurement of HD 21749b is likely to arrive at a significantly underestimated error bar

    Global Retinoblastoma Presentation and Analysis by National Income Level

    Get PDF
    Importance: Early diagnosis of retinoblastoma, the most common intraocular cancer, can save both a child's life and vision. However, anecdotal evidence suggests that many children across the world are diagnosed late. To our knowledge, the clinical presentation of retinoblastoma has never been assessed on a global scale. Objectives: To report the retinoblastoma stage at diagnosis in patients across the world during a single year, to investigate associations between clinical variables and national income level, and to investigate risk factors for advanced disease at diagnosis. Design, Setting, and Participants: A total of 278 retinoblastoma treatment centers were recruited from June 2017 through December 2018 to participate in a cross-sectional analysis of treatment-naive patients with retinoblastoma who were diagnosed in 2017. Main Outcomes and Measures: Age at presentation, proportion of familial history of retinoblastoma, and tumor stage and metastasis. Results: The cohort included 4351 new patients from 153 countries; the median age at diagnosis was 30.5 (interquartile range, 18.3-45.9) months, and 1976 patients (45.4) were female. Most patients (n = 3685 84.7%) were from low-and middle-income countries (LMICs). Globally, the most common indication for referral was leukocoria (n = 2638 62.8%), followed by strabismus (n = 429 10.2%) and proptosis (n = 309 7.4%). Patients from high-income countries (HICs) were diagnosed at a median age of 14.1 months, with 656 of 666 (98.5%) patients having intraocular retinoblastoma and 2 (0.3%) having metastasis. Patients from low-income countries were diagnosed at a median age of 30.5 months, with 256 of 521 (49.1%) having extraocular retinoblastoma and 94 of 498 (18.9%) having metastasis. Lower national income level was associated with older presentation age, higher proportion of locally advanced disease and distant metastasis, and smaller proportion of familial history of retinoblastoma. Advanced disease at diagnosis was more common in LMICs even after adjusting for age (odds ratio for low-income countries vs upper-middle-income countries and HICs, 17.92 95% CI, 12.94-24.80, and for lower-middle-income countries vs upper-middle-income countries and HICs, 5.74 95% CI, 4.30-7.68). Conclusions and Relevance: This study is estimated to have included more than half of all new retinoblastoma cases worldwide in 2017. Children from LMICs, where the main global retinoblastoma burden lies, presented at an older age with more advanced disease and demonstrated a smaller proportion of familial history of retinoblastoma, likely because many do not reach a childbearing age. Given that retinoblastoma is curable, these data are concerning and mandate intervention at national and international levels. Further studies are needed to investigate factors, other than age at presentation, that may be associated with advanced disease in LMICs. © 2020 American Medical Association. All rights reserved

    A super-Earth and two sub-Neptunes transiting the nearby and quiet M dwarf TOI-270

    No full text
    One of the primary goals of exoplanetary science is to detect small, temperate planets passing (transiting) in front of bright and quiet host stars. This enables the characterization of planetary sizes, orbits, bulk compositions, atmospheres and formation histories. These studies are facilitated by small and cool M dwarf host stars. Here we report the Transiting Exoplanet Survey Satellite (TESS) discovery of three small planets transiting one of the nearest and brightest M dwarf hosts observed to date, TOI-270 (TIC 259377017, with K-magnitude 8.3, and 22.5 parsecs away from Earth). The M3V-type star is transited by the super-Earth-sized planet TOI-270 b (1.247−0.083+0.089R) and the sub-Neptune-sized planets TOI-270 c (2.42 ± 0.13 R) and TOI-270 d (2.13 ± 0.12 R). The planets orbit close to a mean-motion resonant chain, with periods (3.36 days, 5.66 days and 11.38 days, respectively) near ratios of small integers (5:3 and 2:1). TOI-270 is a prime target for future studies because (1) its near-resonance allows the detection of transit timing variations, enabling precise mass measurements and dynamical studies; (2) its brightness enables independent radial-velocity mass measurements; (3) the outer planets are ideal for atmospheric characterization via transmission spectroscopy; and (4) the quietness of the star enables future searches for habitable zone planets. Altogether, very few systems with small, temperate exoplanets are as suitable for such complementary and detailed characterization as TOI-270.© 2019, The Author(s), under exclusive licence to Springer Nature Limited.Funding for the TESS mission is provided by NASA’s Science Mission directorate. We acknowledge the use of public TESS Alert data from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center. This research has made use of the Exoplanet Follow-up Observation Program website, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This paper includes data collected by the TESS mission, which are publicly available from the Mikulski Archive for Space Telescopes (MAST). Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center for the production of the SPOC data products. TRAPPIST is funded by the Belgian Fund for Scientific Research (Fond National de la Recherche Scientifique, FNRS) under the grant FRFC 2.5.594.09.F, with the participation of the Swiss National Science Fundation (SNF). The research leading to these results has received funding from the ARC grant for Concerted Research Actions, financed by the Wallonia-Brussels Federation. This work uses observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 102.C-0503(A). This work makes use of results from the European Space Agency (ESA) space mission Gaia. Gaia data are being processed by the Gaia Data Processing and Analysis Consortium (DPAC). Funding for the DPAC is provided by national institutions, in particular the institutions participating in the Gaia MultiLateral Agreement (MLA). This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research has made use of NASA’s Astrophysics Data System Bibliographic Services. This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. M.N.G., C.X.H. and J.B. acknowledge support from MIT’s Kavli Institute as Torres postdoctoral fellows. D.D. acknowledges support for this work provided by NASA through Hubble Fellowship grant HST-HF2-51372.001-A, awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy for NASA, under contract NAS5-26555. T.D. acknowledges support from MIT’s Kavli Institute as a Kavli postdoctoral fellow. Work by B.T.M. was performed under contract with the Jet Propulsion Laboratory (JPL) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. J.G.W. is supported by a grant from the John Templeton Foundation. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. S.W. thanks the Heising-Simons Foundation for their generous support. M.G. and E.J. are FNRS Senior Research Associates. K.H. acknowledges support from STFC grant ST/R000824/1. B.R.-A. acknowledges funding support from Conicyt Pai/Concurso Nacional Inserción En La Academia, Convocatoria 2015 79150050 and Fondecyt through grant 11181295. J.C.S. acknowledges funding support from Spanish public funds for research under projects ESP2017-87676-2-2 and RYC-2012-09913 (Ramón y Cajal programme) of the Spanish Ministry of Science and Education. J.A.D. is a 51 Pegasi b Postdoctoral Fellow.Peer Reviewe

    Conceptual feasibility studies of a CO (X) -free hydrogen production from ammonia decomposition in a membrane reactor for PEM fuel cells

    No full text
    CO (X) -free hydrogen production from ammonia decomposition in a membrane reactor (MR) for PEM fuel cells was studied using a commercial chemical process simulator, Aspen HYSYSA (R). With process simulation models validated by previously reported kinetics and experimental data, the effect of key operating parameters such as H-2 permeance, He sweep gas flow, and operating temperature was investigated to compare the performance of an MR and a conventional packed-bed reactor (PBR). Higher ammonia conversions and H-2 yields were obtained in an MR than ones in a PBR. It was also found that He sweep gas flow was favorable for X (NH3) enhancement in an MR with a critical value (5 kmol h(-1)), above which no further effect was observed. A higher H-2 permeance led to an increased H-2 yield and H-2 yield enhancement in an MR with the reverse effect of operating temperature on the enhancement. In addition, lower operating temperature resulted in higher X (NH3) enhancement and H-2 yield enhancement as well as NG cost savings in a MR compared to a conventional PBR
    corecore