2,690 research outputs found

    Selective dip-coating of chemically micropatterned surfaces

    Get PDF
    We characterize the selective deposition of liquid microstructures on chemically heterogeneous surfaces by means of dip coating processes. The maximum deposited film thickness depends critically on the speed of withdrawal as well as the pattern size, geometry, and angular orientation. For vertically oriented hydrophilic strips, we derive a hydrodynamic scaling relation for the deposited film thickness which agrees very well with interferometric measurements of dip-coated liquid lines. Due to the lateral confinement of the liquid, our scaling relation differs considerably from the classic Landau–Levich formula for chemically homogeneous surfaces. Dip coating is a simple method for creating large area arrays of liquid microstructures for applications involving chemical analysis and synthesis, biochemical assays, or wet printing of liquid polymer or ink patterns

    Displasia renal em um bezerro Limousin

    Get PDF
    Descreve-se um caso de displasia renal em um bezerro Limousin, macho, de quatro meses. O animal apresentava perda de peso, baixa taxa de crescimento, anorexia, apatia, diarrĂ©ia escura fĂ©tida e uremia, sem melhora apesar de tratamento. O bezerro foi sacrificado para interromper o sofrimento adicional e submetido Ă  necropsia. Ao exame foi observado que os rins estavam pequenos, firmes, pĂĄlidos e com superfĂ­cie rugosa. A cĂĄpsula estava aderida Ă  uma superfĂ­cie subcapsular irregular. O cĂłrtex tinha aparĂȘncia difusamente pĂĄlida e fibrosa e apresentava mĂșltiplos focos brancos de fibrose. A junção cĂłrtico-medular estava indistinta. O exame histologico dos rins revelou mĂșltiplos glomĂ©rulos imaturos com nĂșcleo perifĂ©rico, capilares inaparentes e padrĂŁo arbĂłreo. O cĂłrtex renal apresentou tĂșbulos primitivos com epitĂ©lio cubĂłide ou cilĂ­ndrico envolvido por mesĂȘnquima corado somente pelo alcian blue e nĂŁo pelo tricrĂŽmico de Masson. Foi tambĂ©m observada leve fibrose intersticial na medula renal. Os rins mostravam estruturas em estĂĄgio inapropriado de desenvolvimento ou anĂŽmalas

    Surface finish control by electrochemical polishing in stainless steel 316 pipes

    Get PDF
    Electrochemical machining (ECM) is a non-conventional machining process which is based on the localised anodic dissolution of any conductive material. One of the main applications of ECM is the polishing of materials with enhanced characteristics, such as high strength, heat-resistance or corrosion-resistance, i.e. electrochemical polishing. The present work presents an evaluation of the parameters involved in the ECM of Stainless Steel 316 (SS316) with the objective of predicting the resulting surface finish on the sample. The interest of studying ECM on SS316 resides on the fact that a repeatable surface finish is not easily achieved. ECM experimental tests on SS316 pipes of 1.5" (0.0381 m) diameter were conducted by varying machining parameters such as voltage, interelectrode gap, electrolyte inlet temperature, and electrolyte flow rate. The surface finish of the samples was then evaluated in order to find the significance of each of these parameters on the surface quality of the end product. Results showed that overvoltage, which is dependent on the interelectrode gap and the electrolyte temperature, is one of the main parameters affecting the surface finish; additionally there is a strong relationship between the resulting surface finish and the electrolyte flow. The interelectrode gap and inlet electrolyte temperature also affect the resulting surface finish but their influence was not so evident in this work. Finally, the variation of the electrolyte temperature during the process was found to have a great impact on the uniformity of the surface finish along the sample. We believe that this contribution enables the tailoring of the surface finish to specific applications while reducing manufacturing costs and duration of the ECM process

    Charge Transport Through Open, Driven Two-Level Systems with Dissipation

    Full text link
    We derive a Floquet-like formalism to calculate the stationary average current through an AC driven double quantum dot in presence of dissipation. The method allows us to take into account arbitrary coupling strengths both of a time-dependent field and a bosonic environment. We numerical evaluate a truncation scheme and compare with analytical, perturbative results such as the Tien-Gordon formula.Comment: 14 pages, 6 figures. To appear in Phys. Rev.

    Effects and Detectability of Quasi-Single Field Inflation in the Large-Scale Structure and Cosmic Microwave Background

    Full text link
    Quasi-single field inflation predicts a peculiar momentum dependence in the squeezed limit of the primordial bispectrum which smoothly interpolates between the local and equilateral models. This dependence is directly related to the mass of the isocurvatons in the theory which is determined by the supersymmetry. Therefore, in the event of detection of a non-zero primordial bispectrum, additional constraints on the parameter controlling the momentum-dependence in the squeezed limit becomes an important question. We explore the effects of these non-Gaussian initial conditions on large-scale structure and the cosmic microwave background, with particular attention to the galaxy power spectrum at large scales and scale-dependence corrections to galaxy bias. We determine the simultaneous constraints on the two parameters describing the QSF bispectrum that we can expect from upcoming large-scale structure and cosmic microwave background observations. We find that for relatively large values of the non-Gaussian amplitude parameters, but still well within current uncertainties, galaxy power spectrum measurements will be able to distinguish the QSF scenario from the predictions of the local model. A CMB likelihood analysis, as well as Fisher matrix analysis, shows that there is also a range of parameter values for which Planck data may be able distinguish between QSF models and the related local and equilateral shapes. Given the different observational weightings of the CMB and LSS results, degeneracies can be significantly reduced in a joint analysis.Comment: 27 pages, 14 figure

    2-loop Functional Renormalization Group Theory of the Depinning Transition

    Full text link
    We construct the field theory which describes the universal properties of the quasi-static isotropic depinning transition for interfaces and elastic periodic systems at zero temperature, taking properly into account the non-analytic form of the dynamical action. This cures the inability of the 1-loop flow-equations to distinguish between statics and quasi-static depinning, and thus to account for the irreversibility of the latter. We prove two-loop renormalizability, obtain the 2-loop beta-function and show the generation of "irreversible" anomalous terms, originating from the non-analytic nature of the theory, which cause the statics and driven dynamics to differ at 2-loop order. We obtain the roughness exponent zeta and dynamical exponent z to order epsilon^2. This allows to test several previous conjectures made on the basis of the 1-loop result. First it demonstrates that random-field disorder does indeed attract all disorder of shorter range. It also shows that the conjecture zeta=epsilon/3 is incorrect, and allows to compute the violations, as zeta=epsilon/3 (1 + 0.14331 epsilon), epsilon=4-d. This solves a longstanding discrepancy with simulations. For long-range elasticity it yields zeta=epsilon/3 (1 + 0.39735 epsilon), epsilon=2-d (vs. the standard prediction zeta=1/3 for d=1), in reasonable agreement with the most recent simulations. The high value of zeta approximately 0.5 found in experiments both on the contact line depinning of liquid Helium and on slow crack fronts is discussed.Comment: 32 pages, 17 figures, revtex

    Effective interaction between helical bio-molecules

    Get PDF
    The effective interaction between two parallel strands of helical bio-molecules, such as deoxyribose nucleic acids (DNA), is calculated using computer simulations of the "primitive" model of electrolytes. In particular we study a simple model for B-DNA incorporating explicitly its charge pattern as a double-helix structure. The effective force and the effective torque exerted onto the molecules depend on the central distance and on the relative orientation. The contributions of nonlinear screening by monovalent counterions to these forces and torques are analyzed and calculated for different salt concentrations. As a result, we find that the sign of the force depends sensitively on the relative orientation. For intermolecular distances smaller than 6A˚6\AA it can be both attractive and repulsive. Furthermore we report a nonmonotonic behaviour of the effective force for increasing salt concentration. Both features cannot be described within linear screening theories. For large distances, on the other hand, the results agree with linear screening theories provided the charge of the bio-molecules is suitably renormalized.Comment: 18 pages, 18 figures included in text, 100 bibliog

    Semigroup Closures of Finite Rank Symmetric Inverse Semigroups

    Full text link
    We introduce the notion of semigroup with a tight ideal series and investigate their closures in semitopological semigroups, particularly inverse semigroups with continuous inversion. As a corollary we show that the symmetric inverse semigroup of finite transformations Iλn\mathscr{I}_\lambda^n of the rank ⩜n\leqslant n is algebraically closed in the class of (semi)topological inverse semigroups with continuous inversion. We also derive related results about the nonexistence of (partial) compactifications of classes of semigroups that we consider.Comment: With the participation of the new coauthor - Jimmie Lawson - the manuscript has been substantially revised and expanded. Accordingly, we have also changed the manuscript titl

    Constraining primordial non-Gaussianity with cosmological weak lensing: shear and flexion

    Full text link
    We examine the cosmological constraining power of future large-scale weak lensing surveys on the model of \emph{Euclid}, with particular reference to primordial non-Gaussianity. Our analysis considers several different estimators of the projected matter power spectrum, based on both shear and flexion, for which we review the covariances and Fisher matrices. The bounds provided by cosmic shear alone for the local bispectrum shape, marginalized over σ8\sigma_8, are at the level of ΔfNL∌100\Delta f_\mathrm{NL} \sim 100. We consider three additional bispectrum shapes, for which the cosmic shear constraints range from ΔfNL∌340\Delta f_\mathrm{NL}\sim 340 (equilateral shape) up to ΔfNL∌500\Delta f_\mathrm{NL}\sim 500 (orthogonal shape). The competitiveness of cosmic flexion constraints against cosmic shear ones depends on the galaxy intrinsic flexion noise, that is still virtually unconstrained. Adopting the very high value that has been occasionally used in the literature results in the flexion contribution being basically negligible with respect to the shear one, and for realistic configurations the former does not improve significantly the constraining power of the latter. Since the flexion noise decreases with decreasing scale, by extending the analysis up to ℓmax=20,000\ell_\mathrm{max} = 20,000 cosmic flexion, while being still subdominant, improves the shear constraints by ∌10\sim 10% when added. However on such small scales the highly non-linear clustering of matter and the impact of baryonic physics make any error estimation uncertain. By considering lower, and possibly more realistic, values of the flexion intrinsic shape noise results in flexion constraining power being a factor of ∌2\sim 2 better than that of shear, and the bounds on σ8\sigma_8 and fNLf_\mathrm{NL} being improved by a factor of ∌3\sim 3 upon their combination. (abridged)Comment: 30 pages, 4 figures, 4 tables. To appear on JCA

    Donor states in modulation-doped Si/SiGe heterostructures

    Full text link
    We present a unified approach for calculating the properties of shallow donors inside or outside heterostructure quantum wells. The method allows us to obtain not only the binding energies of all localized states of any symmetry, but also the energy width of the resonant states which may appear when a localized state becomes degenerate with the continuous quantum well subbands. The approach is non-variational, and we are therefore also able to evaluate the wave functions. This is used to calculate the optical absorption spectrum, which is strongly non-isotropic due to the selection rules. The results obtained from calculations for Si/Si1−x_{1-x}Gex_x quantum wells allow us to present the general behavior of the impurity states, as the donor position is varied from the center of the well to deep inside the barrier. The influence on the donor ground state from both the central-cell effect and the strain arising from the lattice mismatch is carefully considered.Comment: 17 pages, 10 figure
    • 

    corecore