2,690 research outputs found
Selective dip-coating of chemically micropatterned surfaces
We characterize the selective deposition of liquid microstructures on chemically heterogeneous surfaces by means of dip coating processes. The maximum deposited film thickness depends critically on the speed of withdrawal as well as the pattern size, geometry, and angular orientation. For vertically oriented hydrophilic strips, we derive a hydrodynamic scaling relation for the deposited film thickness which agrees very well with interferometric measurements of dip-coated liquid lines. Due to the lateral confinement of the liquid, our scaling relation differs considerably from the classic LandauâLevich formula for chemically homogeneous surfaces. Dip coating is a simple method for creating large area arrays of liquid microstructures for applications involving chemical analysis and synthesis, biochemical assays, or wet printing of liquid polymer or ink patterns
Displasia renal em um bezerro Limousin
Descreve-se um caso de displasia renal em um bezerro Limousin, macho, de quatro meses. O animal apresentava perda de peso, baixa taxa de crescimento, anorexia, apatia, diarrĂ©ia escura fĂ©tida e uremia, sem melhora apesar de tratamento. O bezerro foi sacrificado para interromper o sofrimento adicional e submetido Ă necropsia. Ao exame foi observado que os rins estavam pequenos, firmes, pĂĄlidos e com superfĂcie rugosa. A cĂĄpsula estava aderida Ă uma superfĂcie subcapsular irregular. O cĂłrtex tinha aparĂȘncia difusamente pĂĄlida e fibrosa e apresentava mĂșltiplos focos brancos de fibrose. A junção cĂłrtico-medular estava indistinta. O exame histologico dos rins revelou mĂșltiplos glomĂ©rulos imaturos com nĂșcleo perifĂ©rico, capilares inaparentes e padrĂŁo arbĂłreo. O cĂłrtex renal apresentou tĂșbulos primitivos com epitĂ©lio cubĂłide ou cilĂndrico envolvido por mesĂȘnquima corado somente pelo alcian blue e nĂŁo pelo tricrĂŽmico de Masson. Foi tambĂ©m observada leve fibrose intersticial na medula renal. Os rins mostravam estruturas em estĂĄgio inapropriado de desenvolvimento ou anĂŽmalas
Surface finish control by electrochemical polishing in stainless steel 316 pipes
Electrochemical machining (ECM) is a non-conventional machining process which is based on the localised anodic dissolution of any conductive material. One of the main applications of ECM is the polishing of materials with enhanced characteristics, such as high strength, heat-resistance or corrosion-resistance, i.e. electrochemical polishing. The present work presents an evaluation of the parameters involved in the ECM of Stainless Steel 316 (SS316) with the objective of predicting the resulting surface finish on the sample. The interest of studying ECM on SS316 resides on the fact that a repeatable surface finish is not easily achieved. ECM experimental tests on SS316 pipes of 1.5" (0.0381 m) diameter were conducted by varying machining parameters such as voltage, interelectrode gap, electrolyte inlet temperature, and electrolyte flow rate. The surface finish of the samples was then evaluated in order to find the significance of each of these parameters on the surface quality of the end product. Results showed that overvoltage, which is dependent on the interelectrode gap and the electrolyte temperature, is one of the main parameters affecting the surface finish; additionally there is a strong relationship between the resulting surface finish and the electrolyte flow. The interelectrode gap and inlet electrolyte temperature also affect the resulting surface finish but their influence was not so evident in this work. Finally, the variation of the electrolyte temperature during the process was found to have a great impact on the uniformity of the surface finish along the sample. We believe that this contribution enables the tailoring of the surface finish to specific applications while reducing manufacturing costs and duration of the ECM process
Charge Transport Through Open, Driven Two-Level Systems with Dissipation
We derive a Floquet-like formalism to calculate the stationary average
current through an AC driven double quantum dot in presence of dissipation. The
method allows us to take into account arbitrary coupling strengths both of a
time-dependent field and a bosonic environment. We numerical evaluate a
truncation scheme and compare with analytical, perturbative results such as the
Tien-Gordon formula.Comment: 14 pages, 6 figures. To appear in Phys. Rev.
Effects and Detectability of Quasi-Single Field Inflation in the Large-Scale Structure and Cosmic Microwave Background
Quasi-single field inflation predicts a peculiar momentum dependence in the
squeezed limit of the primordial bispectrum which smoothly interpolates between
the local and equilateral models. This dependence is directly related to the
mass of the isocurvatons in the theory which is determined by the
supersymmetry. Therefore, in the event of detection of a non-zero primordial
bispectrum, additional constraints on the parameter controlling the
momentum-dependence in the squeezed limit becomes an important question. We
explore the effects of these non-Gaussian initial conditions on large-scale
structure and the cosmic microwave background, with particular attention to the
galaxy power spectrum at large scales and scale-dependence corrections to
galaxy bias. We determine the simultaneous constraints on the two parameters
describing the QSF bispectrum that we can expect from upcoming large-scale
structure and cosmic microwave background observations. We find that for
relatively large values of the non-Gaussian amplitude parameters, but still
well within current uncertainties, galaxy power spectrum measurements will be
able to distinguish the QSF scenario from the predictions of the local model. A
CMB likelihood analysis, as well as Fisher matrix analysis, shows that there is
also a range of parameter values for which Planck data may be able distinguish
between QSF models and the related local and equilateral shapes. Given the
different observational weightings of the CMB and LSS results, degeneracies can
be significantly reduced in a joint analysis.Comment: 27 pages, 14 figure
2-loop Functional Renormalization Group Theory of the Depinning Transition
We construct the field theory which describes the universal properties of the
quasi-static isotropic depinning transition for interfaces and elastic periodic
systems at zero temperature, taking properly into account the non-analytic form
of the dynamical action. This cures the inability of the 1-loop flow-equations
to distinguish between statics and quasi-static depinning, and thus to account
for the irreversibility of the latter. We prove two-loop renormalizability,
obtain the 2-loop beta-function and show the generation of "irreversible"
anomalous terms, originating from the non-analytic nature of the theory, which
cause the statics and driven dynamics to differ at 2-loop order. We obtain the
roughness exponent zeta and dynamical exponent z to order epsilon^2. This
allows to test several previous conjectures made on the basis of the 1-loop
result. First it demonstrates that random-field disorder does indeed attract
all disorder of shorter range. It also shows that the conjecture zeta=epsilon/3
is incorrect, and allows to compute the violations, as zeta=epsilon/3 (1 +
0.14331 epsilon), epsilon=4-d. This solves a longstanding discrepancy with
simulations. For long-range elasticity it yields zeta=epsilon/3 (1 + 0.39735
epsilon), epsilon=2-d (vs. the standard prediction zeta=1/3 for d=1), in
reasonable agreement with the most recent simulations. The high value of zeta
approximately 0.5 found in experiments both on the contact line depinning of
liquid Helium and on slow crack fronts is discussed.Comment: 32 pages, 17 figures, revtex
Effective interaction between helical bio-molecules
The effective interaction between two parallel strands of helical
bio-molecules, such as deoxyribose nucleic acids (DNA), is calculated using
computer simulations of the "primitive" model of electrolytes. In particular we
study a simple model for B-DNA incorporating explicitly its charge pattern as a
double-helix structure. The effective force and the effective torque exerted
onto the molecules depend on the central distance and on the relative
orientation. The contributions of nonlinear screening by monovalent counterions
to these forces and torques are analyzed and calculated for different salt
concentrations. As a result, we find that the sign of the force depends
sensitively on the relative orientation. For intermolecular distances smaller
than it can be both attractive and repulsive. Furthermore we report a
nonmonotonic behaviour of the effective force for increasing salt
concentration. Both features cannot be described within linear screening
theories. For large distances, on the other hand, the results agree with linear
screening theories provided the charge of the bio-molecules is suitably
renormalized.Comment: 18 pages, 18 figures included in text, 100 bibliog
Semigroup Closures of Finite Rank Symmetric Inverse Semigroups
We introduce the notion of semigroup with a tight ideal series and
investigate their closures in semitopological semigroups, particularly inverse
semigroups with continuous inversion. As a corollary we show that the symmetric
inverse semigroup of finite transformations of the rank
is algebraically closed in the class of (semi)topological inverse
semigroups with continuous inversion. We also derive related results about the
nonexistence of (partial) compactifications of classes of semigroups that we
consider.Comment: With the participation of the new coauthor - Jimmie Lawson - the
manuscript has been substantially revised and expanded. Accordingly, we have
also changed the manuscript titl
Constraining primordial non-Gaussianity with cosmological weak lensing: shear and flexion
We examine the cosmological constraining power of future large-scale weak
lensing surveys on the model of \emph{Euclid}, with particular reference to
primordial non-Gaussianity. Our analysis considers several different estimators
of the projected matter power spectrum, based on both shear and flexion, for
which we review the covariances and Fisher matrices. The bounds provided by
cosmic shear alone for the local bispectrum shape, marginalized over
, are at the level of . We consider
three additional bispectrum shapes, for which the cosmic shear constraints
range from (equilateral shape) up to (orthogonal shape). The competitiveness of cosmic
flexion constraints against cosmic shear ones depends on the galaxy intrinsic
flexion noise, that is still virtually unconstrained. Adopting the very high
value that has been occasionally used in the literature results in the flexion
contribution being basically negligible with respect to the shear one, and for
realistic configurations the former does not improve significantly the
constraining power of the latter. Since the flexion noise decreases with
decreasing scale, by extending the analysis up to
cosmic flexion, while being still subdominant, improves the shear constraints
by when added. However on such small scales the highly non-linear
clustering of matter and the impact of baryonic physics make any error
estimation uncertain. By considering lower, and possibly more realistic, values
of the flexion intrinsic shape noise results in flexion constraining power
being a factor of better than that of shear, and the bounds on
and being improved by a factor of upon
their combination. (abridged)Comment: 30 pages, 4 figures, 4 tables. To appear on JCA
Donor states in modulation-doped Si/SiGe heterostructures
We present a unified approach for calculating the properties of shallow
donors inside or outside heterostructure quantum wells. The method allows us to
obtain not only the binding energies of all localized states of any symmetry,
but also the energy width of the resonant states which may appear when a
localized state becomes degenerate with the continuous quantum well subbands.
The approach is non-variational, and we are therefore also able to evaluate the
wave functions. This is used to calculate the optical absorption spectrum,
which is strongly non-isotropic due to the selection rules. The results
obtained from calculations for Si/SiGe quantum wells allow us to
present the general behavior of the impurity states, as the donor position is
varied from the center of the well to deep inside the barrier. The influence on
the donor ground state from both the central-cell effect and the strain arising
from the lattice mismatch is carefully considered.Comment: 17 pages, 10 figure
- âŠ