172 research outputs found

    Pharmacology: workbook for practical classes for foreign stomatology students

    Get PDF
    The educational tutorial contains materials for practical classes and final module control on Pharmacology. The tutorial was prepared to improve self-learning of Pharmacology and optimization of practical classes. It contains questions for self-study for practical classes and final module control, prescription tasks, pharmacological terms that students must know in a particular topic, medical forms of main drugs, multiple choice questions (tests) for selfcontrol, basic and additional references. This tutorial is also a student workbook that provides the entire scope of student’s work during Pharmacology course according to the credit-modular system. The tutorial was drawn up in accordance with the working program on Pharmacology approved by CMC of SE "Dnipropetrovsk medical academy of Health Ministry of Ukraine" on the basis of the standard program on Pharmacology for stomatology students of III - IV levels of accreditation in the specialties Stomatology – 7.110105, Kiev 2011. The tutorial was developed by composite authors of the Department of Pharmacology, Clinical Pharmacology and Pharmacoeconomics of State Establishment "Dnipropetrovsk medical academy of Health Ministry of Ukraine"

    Pharmacology workbook for practical classes for foreign students (general medicine)

    Get PDF
    The educational tutorial contains materials for practical classes and final module control on Pharmacology. The tutorial was prepared to improve self-learning of Pharmacology and optimization of practical classes. It contains questions for self-study for practical classes and final module control, prescription tasks, pharmacological terms that students must know in a particular topic, medical forms of main drugs, multiple choice questions (tests) for self-control, basic and additional references. This tutorial is also a student workbook that provides the entire scope of student’s work during Pharmacology course according to the credit-modular system. The tutorial was drawn up in accordance with the working program on Pharmacology approved by CMC of SE “Dnipropetrovsk medical academy of Health Ministry of Ukraine” on the basis of the standard program on Pharmacology for medical students in the specialties 7.12010001 – General medicine, 7.12010002 – Pediatrics, 7.12010003 – Preventive health care (Kyiv, 2006). The tutorial was developed by composite authors of the Department of Pharmacology, Clinical Pharmacology and Pharmacoeconomics of State Establishment “Dnipropetrovsk medical academy of Health Ministry of Ukraine”

    Multiband model for penetration depth in MgB2

    Get PDF
    The results of first principles calculations of the electronic structure and the electron-phonon interaction in MgB2 are used to study theoretically the temperature dependence and anisotropy of the magnetic field penetration depth. The effects of impurity scattering are essential for a proper description of the experimental results. We compare our results with experimental data and we argue that the two-band model describes the data rather well.Comment: submitted to Phys. Rev.

    Measurement of xF3xF_3 and F2F_2 Structure Functions in Low Q2Q^2 Region with the IHEP-JINR Neutrino Detector

    Full text link
    The isoscalar structure functions xF3xF_3 and F2F_2 are measured as functions of xx averaged over all Q2Q^2 permissible for the range of 6 to 28 GeV of incident neutrino (anti-neutrino) energy at the IHEP-JINR Neutrino Detector. The QCD analysis of xF3xF_3 structure function provides ΛMSˉ(4)=(411±200)\Lambda_{\bar{MS}}^{(4)} = (411 \pm 200) MeV under the assumption of QCD validity in the region of low Q2Q^2. The corresponding value of the strong interaction constant αS(MZ)=0.1230.013+0.010\alpha_S (M_Z) = 0.123^{+0.010}_{-0.013} agrees with the recent result of the CCFR collaboration and with the combined LEP/SLC result.Comment: 11 pages, 1 Postscript figure, LaTeX. Talk given at the 7th International Workshop on Deep Inelastic Scattering and QCD (DIS 99), Zeuthen, Germany, 19-23 Apr 199

    Atomically precise semiconductor-graphene and hBN interfaces by Ge intercalation

    Get PDF
    The full exploration of the potential, which graphene offers to nanoelectronics requires its integration into semiconductor technology. So far the real-world applications are limited by the ability to concomitantly achieve large single-crystalline domains on dielectrics and semiconductors and to tailor the interfaces between them. Here we show a new direct bottom-up method for the fabrication of high-quality atomically precise interfaces between 2D materials, like graphene and hexagonal boron nitride (hBN), and classical semiconductor via Ge intercalation. Using angle-resolved photoemission spectroscopy and complementary DFT modelling we observed for the first time that epitaxially grown graphene with the Ge monolayer underneath demonstrates Dirac Fermions unaffected by the substrate as well as an unperturbed electronic band structure of hBN. This approach provides the intrinsic relativistic 2D electron gas towards integration in semiconductor technology. Hence, these new interfaces are a promising path for the integration of graphene and hBN into state-of-the-art semiconductor technology

    Determination of the high-twist contribution to the structure function xF3νNxF^{\nu N}_3

    Get PDF
    We extract the high-twist contribution to the neutrino-nucleon structure function xF3(ν+νˉ)NxF_3^{(\nu+\bar{\nu})N} from the analysis of the data collected by the IHEP-JINR Neutrino Detector in the runs with the focused neutrino beams at the IHEP 70 GeV proton synchrotron. The analysis is performed within the infrared renormalon (IRR) model of high twists in order to extract the normalization parameter of the model. From the NLO QCD fit to our data we obtained the value of the IRR model normalization parameter Λ32=0.69±0.37 (exp)±0.16 (theor) GeV2\Lambda^2_{3}=0.69\pm0.37~({\rm exp})\pm0.16~({\rm theor})~{\rm GeV}^2. We also obtained Λ32=0.36±0.22 (exp)±0.12 (theor) GeV2\Lambda^2_{3}=0.36\pm0.22~({\rm exp})\pm0.12~({\rm theor})~{\rm GeV}^2 from a similar fit to the CCFR data. The average of both results is Λ32=0.44±0.19 (exp) GeV2\Lambda^2_{3}=0.44\pm0.19~({\rm exp})~{\rm GeV}^2.Comment: preprint IHEP-01-18, 7 pages, LATEX, 1 figure (EPS

    Status of NSLS-II booster

    No full text
    The National Synchrotron Light Source II is a third generation light source under construction at Brookhaven National Laboratory. The project includes a highly optimized 3 GeV electron storage ring, linac pre-injector and full-energy booster-synchrotron. Budker Institute of Nuclear Physics builds booster for NSLS-II. The booster should accelerate the electron beam continuously and reliably from minimal 170 MeV injection energy to maximal energy of 3.15 GeV and average beam current of 20 mA. The booster shall be capable of multi-bunch and single bunch operation. This paper summarizes the status of NSLS-II booster.Национальный источник синхротронного излучения II является синхротроном третьего поколения, созданным в Брукхевенской национальной лаборатории. Проект включает: высокооптимизированное накопительное кольцо на 3 ГэВ, линейный ускоритель и бустерный синхротрон на полную энергию. Институт ядерной физики им. Г.И. Будкера создает бустер для NSLS-II. Бустер должен надежно и непрерывно ускорять пучок электронов от минимальной энергии инжекции 170 МэВ до максимальной энергии 3,15 ГэВ с током пучка 20 мА. Бустер должен быть способен работать в односгустковом и многосгустковом режимах. Эта статья суммирует состояние дел по бустеру для NSLS-II.Національне джерело синхротронного випромінювання II є синхротроном третього покоління, створеним у Брукхевенській національній лабораторії. Проект включає: високооптимізоване накопичувальне кільце на 3 ГеВ, лінійний прискорювач і бустерний синхротрон на повну енергію. Інститут ядерної фізики ім. Г.І. Будкера створює бустер для NSLS-II. Бустер повинен надійно і безперервно прискорювати пучок електронів від мінімальної енергії інжекції 170 МеВ до максимальної енергії 3,15 ГеВ зі струмом пучка 20 мА. Бустер повинен бути здатний працювати в односгустковому і багатосгустковому режимах. Ця стаття підсумовує стан справ по бустеру для NSLS-II

    Oxidative Coupling of Anionic Abnormal N-Hetero-cyclic Carbenes: Efficient Access to Janus-Type 4,4'-Bis(2H-imidazol-2-ylidene)s

    No full text
    The oxidative coupling of anionic imidazol-4-ylidenes protected at the C2 position with [MnCp(CO)(2)] or BH3 led to the corresponding 4,4'-bis(2H-imidazol-2-ylidene) complexes or adducts, in which the two carbene moieties are connected through a single C-C bond. Subsequent acidic treatment of the later species led to the corresponding 4,4'-bis(imidazolium) salts in good yields. The overall procedure offers practical access to a novel class of Janus-type bis(NHC)s. Strikingly, the coplanarity of the two NHC rings within the mesityl derivative 4,4'-bis(IMes), favored by steric hindrance along with stabilizing intramolecular C-H center dot center dot center dot pi aryl interactions, allows the alignment of the pi-systems and, as a direct consequence, significant electron communication through the bis(carbene) scaffold

    Oxidative Coupling of Anionic Abnormal N-Heterocyclic Carbenes: Efficient Access to Janus-Type 4,4′-Bis(2H-imidazol-2-ylidene)s

    No full text
    The oxidative coupling of anionic imidazol-4-ylidenes protected at the C2 position with [MnCp(CO)2] or BH3 led to the corresponding 4,4′-bis(2H-imidazol-2-ylidene) complexes or adducts, in which the two carbene moieties are connected through a single C−C bond. Subsequent acidic treatment of the later species led to the corresponding 4,4′-bis(imidazolium) salts in good yields. The overall procedure offers practical access to a novel class of Janus-type bis(NHC)s. Strikingly, the coplanarity of the two NHC rings within the mesityl derivative 4,4′-bis(IMes), favored by steric hindrance along with stabilizing intramolecular C−H⋅⋅⋅π aryl interactions, allows the alignment of the π-systems and, as a direct consequence, significant electron communication through the bis(carbene) scaffold. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinhei
    corecore