460 research outputs found

    Linewidth of single photon transitions in Mn12_{12}-acetate

    Full text link
    We use time-domain terahertz spectroscopy to measure the position and linewidth of single photon transitions in Mn12_{12}-acetate. This linewidth is compared to the linewidth measured in tunneling experiments. We conclude that local magnetic fields (due to dipole or hyperfine interactions) cannot be responsible for the observed linewidth, and suggest that the linewidth is due to variations in the anisotropy constants for different clusters. We also calculate a lower limit on the dipole field distribution that would be expected due to random orientations of clusters and find that collective effects must narrow this distribution in tunneling measurements.Comment: 5 pages, accepted to Physical Review

    Role of disorder in half-filled high Landau levels

    Full text link
    We study the effects of disorder on the quantum Hall stripe phases in half-filled high Landau levels using exact numerical diagonalization. We show that, in the presence of weak disorder, a compressible, striped charge density wave, becomes the true ground state. The projected electron density profile resembles that of a smectic liquid. With increasing disorder strength W, we find that there exists a critical value, W_c \sim 0.12 e^2/\epsilon l, where a transition/crossover to an isotropic phase with strong local electron density fluctuations takes place. The many-body density of states are qualitatively distinguishable in these two phases and help elucidate the nature of the transition.Comment: 4 pages, 4 figure

    Asymmetric Lineshape due to Inhomogeneous Broadening of the Crystal-Field Transitions in Mn12ac Single Crystals

    Full text link
    The lineshape of crystal-field transitions in single crystals of Mn12ac molecular magnets is determined by the magnetic history. The absorption lines are symmetric and Gaussian for the non-magnetized state obtained by zero-field cooling (zfc). In the magnetized state which is reached when the sample is cooled in a magnetic field (fc), however, they are asymmetric even in the absence of an external magnetic field. These observations are quantitatively explained by inhomogeneous symmetrical (Gaussian) broadening of the crystal-field transitions combined with a contribution of off-diagonal components of the magnetic susceptibility to the effective magnetic permeability.Comment: 4 pages, 3 figure

    Magnetic Field Effects on the Far-Infrared Absorption in Mn_12-acetate

    Full text link
    We report the far-infrared spectra of the molecular nanomagnet Mn_12-acetate (Mn_12) as a function of temperature (5-300 K) and magnetic field (0-17 T). The large number of observed vibrational modes is related to the low symmetry of the molecule, and they are grouped together in clusters. Analysis of the mode character based on molecular dynamics simulations and model compound studies shows that all vibrations are complex; motion from a majority of atoms in the molecule contribute to most modes. Three features involving intramolecular vibrations of the Mn_12 molecule centered at 284, 306 and 409 cm-1 show changes with applied magnetic field. The structure near 284 cm−1^{-1} displays the largest deviation with field and is mainly intensity related. A comparison between the temperature dependent absorption difference spectra, the gradual low-temperature cluster framework distortion as assessed by neutron diffraction data, and field dependent absorption difference spectra suggests that this mode may involve Mn motion in the crown.Comment: 5 pages, 4 figures, PRB accepte

    A class of finite two - dimensional sigma models and string vacua

    Full text link
    We consider a two - dimensional Minkowski signature sigma model with a 2+N2+N - dimensional target space metric having a null Killing vector. It is shown that the model is finite to all orders of the loop expansion if the dependence of the ``transverse" part of the metric \ggij (u,x) on the light cone coordinate uu is subject to the standard renormalization group equation of the NN - dimensional sigma model, {d\ggij\over du} = \gb_{ij} =R_{ij} + ... . In particular, we discuss the `one - coupling' case when \ggij(u,x) is a metric of an NN - dimensional symmetric space \gij(x) multiplied by a function f(u)f(u). The theory is finite if f(u)f(u) is equal to the ``running" coupling of the symmetric space sigma model (with uu playing the role of the RG ``time"). For example, the geometry of space - time with \gij being the metric of the NN - sphere is determined by the form of the \gb - function of the O(N+1)O(N+1) model. The ``asymptotic freedom" limit of large uu corresponds to the weak coupling limit of small 2+N2+N - dimensional curvature. We prove that there exists a dilaton field which together with the 2+N2+N - dimensional metric solves the sigma model Weyl invariance conditions. The resulting backgrounds thus represent new tree level string vacua. We also remark on possible connections with some 2d2d quantum gravity models.Comment: 15 pages [Complete revision. The main statement of the previous version is generalised to the case of an arbitrary ``transverse" metric satisfying sigma model renormalization group equation.

    Quantum Collapse of a Small Dust Shell

    Get PDF
    The full quantum mechanical collapse of a small relativistic dust shell is studied analytically, asymptotically and numerically starting from the exact finite dimensional classical reduced Hamiltonian recently derived by H\'aj{\'\i}\v{c}ek and Kucha\v{r}. The formulation of the quantum mechanics encounters two problems. The first is the multivalued nature of the Hamiltonian and the second is the construction of an appropriate self adjoint momentum operator in the space of the shell motion which is confined to a half line. The first problem is solved by identifying and neglecting orbits of small action in order to obtain a single valued Hamiltonian. The second problem is solved by introducing an appropriate lapse function. The resulting quantum mechanics is then studied by means of analytical and numerical techniques. We find that the region of total collapse has very small probability. We also find that the solution concentrates around the classical Schwarzschild radius. The present work obtains from first principles a quantum mechanics for the shell and provides numerical solutions, whose behavior is explained by a detailed WKB analysis for a wide class of collapsing shells.Comment: 23 pages, 8 figures, Revtex4 fil

    Properties of low-lying states in some high-nuclearity Mn, Fe and V clusters: Exact studies of Heisenberg models

    Full text link
    Using an efficient numerical scheme that exploits spatial symmetries and spin parity, we have obtained the exact low-lying eigenstates of exchange Hamiltonians for the high nuclearity spin clusters, Mn_{12}, Fe_8 and V_{15}. The largest calculation involves the Mn_{12} cluster which spans a Fock space of a hundred million. Our results show that the earlier estimates of the exchange constants need to be revised for the Mn_{12} cluster to explain the level ordering of low-lying eigenstates. In the case of the Fe_8 cluster, correct level ordering can be obtained which is consistent with the exchange constants for the already known clusters with butterfly structure. In the V_{15} cluster, we obtain an effective Hamiltonian that reproduces exactly, the eight low-lying eigenvalues of the full Hamiltonian.Comment: Revtex, 12 pages, 16 eps figures; this is the final published versio

    Anisotropic pressure in dense neutron matter under the presence of a strong magnetic field

    Full text link
    Dense neutron matter with recently developed BSk19 and BSk21 Skyrme effective forces is considered in magnetic fields up to 102010^{20} G at zero temperature. The breaking of the rotational symmetry by the magnetic field leads to the differentiation between the pressures along and perpendicular to the field direction which becomes significant in the fields H>Hth∌1018H>H_{th}\sim10^{18} G. The longitudinal pressure vanishes in the critical field 1018<Hcâ‰Č101910^{18}<H_c\lesssim10^{19} G, resulting in the longitudinal instability of neutron matter. For the Skyrme force fitted to the stiffer underlying equation of state (BSk21 vs. BSk19) the threshold HthH_{th} and critical HcH_c magnetic fields become larger. The longitudinal and transverse pressures as well as the anisotropic equation of state of neutron matter are determined under the conditions relevant for the cores of magnetars.Comment: 7 pages, 3 figures; published online 7 December 201

    Airy-like patterns in heavy ion elastic scattering

    Get PDF
    A semiclassical analysis of an optical potential cross section is presented. The cross section considered is characterized by the appearance of an Airy-like pattern. This pattern is similar to that which is present in many cross sections, which fit the recent measurements of light heavy ion elastic scattering, and is considered as a manifestation of a rainbow phenomenon. The semiclassical analysis shows that, in the case considered, the oscillations arise from the interference between the contributions from two different terms of a multi-reflection expansion of the scattering function, and, therefore, cannot be associated with the rainbow phenomenon.Comment: 10 pages, 5 figure

    Detailed single crystal EPR lineshape measurements for the single molecule magnets Fe8Br and Mn12-ac

    Full text link
    It is shown that our multi-high-frequency (40-200 GHz) resonant cavity technique yields distortion-free high field EPR spectra for single crystal samples of the uniaxial and biaxial spin S = 10 single molecule magnets (SMMs) [Mn12O12(CH3COO)16(H2O)4].2CH3COOH.4H2O and [Fe8O2(OH)12(tacn)6]Br8.9H2O. The observed lineshapes exhibit a pronounced dependence on temperature, magnetic field, and the spin quantum numbers (Ms values) associated with the levels involved in the transitions. Measurements at many frequencies allow us to separate various contributions to the EPR linewidths, including significant D-strain, g-strain and broadening due to the random dipolar fields of neighboring molecules. We also identify asymmetry in some of the EPR lineshapes for Fe8, and a previously unobserved fine structure to some of the EPR lines for both the Fe8 and Mn12 systems. These findings prove relevant to the mechanism of quantum tunneling of magnetization in these SMMs.Comment: Phys. Rev. B, accepted with minor revision
    • 

    corecore