69 research outputs found

    Retrieval of temperature and water vapor profiles from radio occultation refractivity and bending angle measurements using an Optimal Estimation approach: a simulation study

    No full text
    International audienceThe Optimal Estimation Method is used to retrieve temperature and water vapor profiles from simulated radio occultation measurements in order to assess how different retrieval schemes may affect the assimilation of this data. High resolution ECMWF global fields are used by a state-of-the-art radio occultation simulator to provide quasi-realistic bending angle and refractivity profiles. Both types of profiles are used in the retrieval process to assess their advantages and disadvantages. The impact of the GPS measurement is expressed as an improvement over the a priori knowledge (taken from a 24h old analysis). Large improvements are found for temperature in the upper troposphere and lower stratosphere. Only very small improvements are found in the lower troposphere, where water vapor is present. Water vapor improvements are only significant between about 1 km to 7 km. No pronounced difference is found between retrievals based upon bending angles or refractivity. Results are compared to idealized retrievals, where the atmosphere is spherically symmetric and instrument noise is not included. Comparing idealized to quasi-realistic calculations shows that the main impact of a ray tracing algorithm can be expected for low latitude water vapor, where the horizontal variability is high. We also address the effect of altitude correlations in the temperature and water vapor. Overall, we find that water vapor and temperature retrievals using bending angle profiles are more CPU intensive than refractivity profiles, but that they do not provide significantly better results

    Retrieval of temperature and water vapor profiles from radio occultation refractivity and bending angle measurements using an Optimal Estimation approach: a simulation study

    Get PDF
    The Optimal Estimation Method is used to retrieve temperature and water vapor profiles from simulated radio occultation measurements in order to assess how different retrieval schemes may affect the assimilation of this data. High resolution ECMWF global fields are used by a state-of-the-art radio occultation simulator to provide quasi-realistic bending angle and refractivity profiles. Both types of profiles are used in the retrieval process to assess their advantages and disadvantages. The impact of the GPS measurement is expressed as an improvement over the a priori knowledge (taken from a 24h old analysis). Large improvements are found for temperature in the upper troposphere and lower stratosphere. Only very small improvements are found in the lower troposphere, where water vapor is present. Water vapor improvements are only significant between about 1 km to 7 km. No pronounced difference is found between retrievals based upon bending angles or refractivity. Results are compared to idealized retrievals, where the atmosphere is spherically symmetric and instrument noise is not included. Comparing idealized to quasi-realistic calculations shows that the main impact of a ray tracing algorithm can be expected for low latitude water vapor, where the horizontal variability is high. We also address the effect of altitude correlations in the temperature and water vapor. Overall, we find that water vapor and temperature retrievals using bending angle profiles are more CPU intensive than refractivity profiles, but that they do not provide significantly better results

    Implementation of ROSA radio occultation data handling into EUMETSAT and GRAS SAF processing

    Get PDF
    Within this contribution, outcomes from a GRAS - SAF Visiting Scientist activity focused on the analysis of ROSA data quality for their use in operational weather forecasting will be described and main results will be shown. The ROSA Radio Occultation instrument has been developed by Thales-Alenia-Space, Italy and was funded by the Italian Space Agency (ASI). Such instrument is actually flying on-board three opportunity missions: the Indian OCEANSAT-2, the Argentinean SAC-D and the Indian-French MEGATROPIQUES. Focus of this Visiting Scientist activity has primarily been the analysis of ROSA data from OCEANSAT-2.This activity was divided into two parts. In the first one, performed at EUMETSAT, ROSA data processing was implemented into the EUMETSAT YAROS processor. The required updates into such processing package were implemented in order to make it able to properly manage also ROSA raw observations. It has to be noted that this processor is the baseline for the operational next generation EUMETSAT Radio Occultation ground segment: any changes performed in the framework of YAROS can easily be transferred to the operational ground segment. The YAROS - EUMETSAT processor was then updated and adapted to work with the ROSA raw data, tracking frequencies and instrument database. Adaptation to open loop data, navigation bits acquisition and potentially ionospheric measurement will be performed in the next future. NetCDF-4 YAROS output files are phases, amplitudes, bending angles over impact parameter, along with all other required data. Robust bias and standard deviation of bending angles to ECMWF collocated data were the statistical indicators generated to evaluate the quality of the ROSA observations. The second part of the activity was the adaptation of the GRAS-SAF ROPP (Radio Occultation Processing Package) processor for ROSA data processing. This second part was performed at Danish Meteorological Institute and has been focused on bending angles, refractivity and higher level product generation and validation against ECMWF and co-located occultation profiles. For the first time, one month of ROSA data have been deeply analyzed by a state-of-the-art Radio Occultation processing software and results will be described in the framework of this contributio

    Cavity ring down spectroscopy on solid C<sub>60</sub>

    Get PDF
    The light absorption of a solid sample in the 8.5 μm region is measured via cavity ring down (CRD) absorption spectroscopy, using a free electron laser (FEL) as a source of widely tunable infrared (IR) radiation. A 3 mm thick zinc-selenide (ZnSe) window is used as a substrate for a 20–30 nm thick C60 film. On top of the structureless absorption due to ZnSe (60 is measured with monolayer sensitivity

    Tropical and subtropical cloud transitions in weather and climate prediction models: The GCSS/WGNE pacific cross-section intercomparison (GPCI)

    No full text
    International audienceA model evaluation approach is proposed in which weather and climate prediction models are analyzed along a Pacific Ocean cross section, from the stratocumulus regions off the coast of California, across the shallow convection dominated trade winds, to the deep convection regions of the ITCZ-the Global Energy and Water Cycle Experiment Cloud System Study/Working Group on Numerical Experimentation (GCSS/WGNE) Pacific Cross-Section Intercomparison (GPCI). The main goal of GPCI is to evaluate and help understand and improve the representation of tropical and subtropical cloud processes in weather and climate prediction models. In this paper, a detailed analysis of cloud regime transitions along the cross section from the subtropics to the tropics for the season June-July-August of 1998 is presented. This GPCI study confirms many of the typical weather and climate prediction model problems in the representation of clouds: underestimation of clouds in the stratocumulus regime by most models with the corresponding consequences in terms of shortwave radiation biases; overestimation of clouds by the 40-yrECMWFRe-Analysis (ERA-40) in the deep tropics (in particular) with the corresponding impact in the outgoing longwave radiation; large spread between the different models in terms of cloud cover, liquid water path and shortwave radiation; significant differences between the models in terms of vertical cross sections of cloud properties (in particular), vertical velocity, and relative humidity. An alternative analysis of cloud cover mean statistics is proposed where sharp gradients in cloud cover along the GPCI transect are taken into account. This analysis shows that the negative cloud bias of some models and ERA-40 in the stratocumulus regions [as compared to the first International Satellite Cloud Climatology Project (ISCCP)] is associated not only with lower values of cloud cover in these regimes, but also with a stratocumulus-to-cumulus transition that occurs too early along the trade wind Lagrangian trajectory. Histograms of cloud cover along the cross section differ significantly between models. Some models exhibit a quasi-bimodal structure with cloud cover being either very large (close to 100%) or very small, while other models show a more continuous transition. The ISCCP observations suggest that reality is in-between these two extreme examples. These different patterns reflect the diverse nature of the cloud, boundary layer, and convection parameterizations in the participating weather and climate prediction models. © 2011 American Meteorological Society

    Quantification of structural uncertainty in climate data records from GPS radio occultation

    Get PDF
    Global Positioning System (GPS) radio occultation (RO) has provided continuous observations of the Earth's atmosphere since 2001 with global coverage, all-weather capability, and high accuracy and vertical resolution in the upper troposphere and lower stratosphere (UTLS). Precise time measurements enable long-term stability but careful processing is needed. Here we provide climate-oriented atmospheric scientists with multicenter-based results on the long-term stability of RO climatological fields for trend studies. We quantify the structural uncertainty of atmospheric trends estimated from the RO record, which arises from current processing schemes of six international RO processing centers, DMI Copenhagen, EUM Darmstadt, GFZ Potsdam, JPL Pasadena, UCAR Boulder, and WEGC Graz. Monthly-mean zonal-mean fields of bending angle, refractivity, dry pressure, dry geopotential height, and dry temperature from the CHAMP mission are compared for September 2001 to September 2008. We find that structural uncertainty is lowest in the tropics and mid-latitudes (50° S to 50° N) from 8 km to 25 km for all inspected RO variables. In this region, the structural uncertainty in trends over 7 yr is &lt;0.03% for bending angle, refractivity, and pressure, &lt;3 m for geopotential height of pressure levels, and &lt;0.06 K for temperature; low enough for detecting a climate change signal within about a decade. Larger structural uncertainty above about 25 km and at high latitudes is attributable to differences in the processing schemes, which undergo continuous improvements. Though current use of RO for reliable climate trend assessment is bound to 50° S to 50° N, our results show that quality, consistency, and reproducibility are favorable in the UTLS for the establishment of a climate benchmark record

    Long-range transport of airborne microbes over the global tropical and subtropical ocean

    Get PDF
    The atmosphere plays a fundamental role in the transport of microbes across the planet but it is often neglected as a microbial habitat. Although the ocean represents two thirds of the Earth’s surface, there is little information on the atmospheric microbial load over the open ocean. Here we provide a global estimate of microbial loads and air-sea exchanges over the tropical and subtropical oceans based on the data collected along the Malaspina 2010 Circumnavigation Expedition. Total loads of airborne prokaryotes and eukaryotes were estimated at 2.2 × 1021 and 2.1 × 1021 cells, respectively. Overall 33–68% of these microorganisms could be traced to a marine origin, being transported thousands of kilometres before re-entering the ocean. Moreover, our results show a substantial load of terrestrial microbes transported over the oceans, with abundances declining exponentially with distance from land and indicate that islands may act as stepping stones facilitating the transoceanic transport of terrestrial microbes.En prens
    • …
    corecore