1,379 research outputs found

    Steplike Lattice Deformation of Single Crystalline (La0.4_{0.4}Pr0.6_{0.6})1.2_{1.2}Sr1.8_{1.8}Mn2_{2}O7_{7} Bilayered Manganite

    Get PDF
    We report a steplike lattice transformation of single crystalline (La0.4_{0.4}Pr0.6_{0.6})1.2_{1.2}Sr1.8_{1.8}Mn2_{2}O7_{7}bilayered manganite accompanied by both magnetization and magnetoresistive jumps, and examine the ultrasharp nature of the field-induced first-order transition from a paramagnetic insulator to a ferromagnetic metal phase accompanied by a huge decrease in resistance. Our findings support that the abrupt magnetostriction is closely related to an orbital frustration existing in the inhomogeneous paramagnetic insulating phase rather than a martensitic scenario between competing two phases.Comment: 5 pages,4figures, v4: figures are changed, in press in Phys.Rev.Let

    Colossal electroresistance and colossal magnetoresistive step in paramagnetic insulating phase of single crystalline bilayered manganite(La0.4_{0.4}Pr0.6_{0.6})1.2_{1.2}Sr1.8_{1.8}Mn2_{2}O7_{7}

    Get PDF
    We report a significant decrease in the low-temperature resistance induced by the application of an electric current on the abab-plane in the paramagnetic insulating (PMI) state of (La0.4_{0.4}Pr0.6_{0.6})1.2_{1.2}Sr1.8_{1.8}Mn2_{2}O7_{7}. A colossal electroresistance effect attaining -95% is observed at lower temperatures. A colossal magnetoresistive step appears near 5T at low temperatures below 10K, accompanied by an ultrasharp width of the insulator-metal transition. Injection of higher currents to the crystal causes a disappearance of the steplike transition. These findings have a close relationship with the presence of the short-range charge-ordered clusters pinned within the PMI matrix of the crystal studied.Comment: 4 pages 3 figure

    Statistical Mechanics of the Chinese Restaurant Process: lack of self-averaging, anomalous finite-size effects and condensation

    Full text link
    The Pitman-Yor, or Chinese Restaurant Process, is a stochastic process that generates distributions following a power-law with exponents lower than two, as found in a numerous physical, biological, technological and social systems. We discuss its rich behavior with the tools and viewpoint of statistical mechanics. We show that this process invariably gives rise to a condensation, i.e. a distribution dominated by a finite number of classes. We also evaluate thoroughly the finite-size effects, finding that the lack of stationary state and self-averaging of the process creates realization-dependent cutoffs and behavior of the distributions with no equivalent in other statistical mechanical models.Comment: (5pages, 1 figure

    Strain-induced charge transfer and polarity control of a heterosheet comprising C60 and graphene

    Get PDF
    Using density functional theory combined with the effective screening medium method, the energetics and electronic structure of a C60 molecular sheet adsorbed on graphene were studied in terms of biaxial strains. The optimum spacing and interlayer interaction monotonically decreases and increases, respectively, with an increasing biaxial tensile strain. The biaxial compressive strain induces electron transfer from the graphene to C60 at a 2% lateral compression, leading to an all-carbon charge transfer complex. The heterosheet possesses an intrinsic dipole moment along the graphene-to-C60 molecular layer direction

    Development and characterization of osteogenic cell sheets in an in vivo model

    Get PDF
    [Excerpt] Despite some successes in the tissue engineering field its evolution seems to be tampered by limitations such as cell sourcing and the lack of adequate scaffolds to support cell growth and differentiation. The use of stem cells combined with cell sheet engineering technology seems a promising way to overcome these limitations. In this work bone marrow cells were flushed from 3 weeks old Wistar rat femurs and cultured in basal DMEM medium until subconfluence. Cells were then transferred to thermo-responsive dishes (3 x10⁵ cells/dish) and cultured for 3 weeks in osteogenic medium. [...]info:eu-repo/semantics/publishedVersio

    A novel scan segmentation design method for avoiding shift timing failure in scan testing

    Get PDF
    ITC : 2011 IEEE International Test Conference , 20-22 Sep. 2011 , Anaheim, CA, USAHigh power consumption in scan testing can cause undue yield loss which has increasingly become a serious problem for deep-submicron VLSI circuits. Growing evidence attributes this problem to shift timing failures, which are primarily caused by excessive switching activity in the proximities of clock paths that tends to introduce severe clock skew due to IR-drop-induced delay increase. This paper is the first of its kind to address this critical issue with a novel layout-aware scheme based on scan segmentation design, called LCTI-SS (Low-Clock-Tree-Impact Scan Segmentation). An optimal combination of scan segments is identified for simultaneous clocking so that the switching activity in the proximities of clock trees is reduced while maintaining the average power reduction effect on conventional scan segmentation. Experimental results on benchmark and industrial circuits have demonstrated the advantage of the LCTI-SS scheme
    corecore